Assessing the Potential Impacts of Peak Load
Reduction Interventions viaDomesticElectrical
Load Disaggregation

S. Angwin
26484676

Faculty of Engineering & the Environment

University of Southampton

CENV6144: Individual Project
M.Sc.Energy and Sustainability (Energy, Environment & Buildings)

Supervisor Professor Patrick James

19" September 2014



Abstract

In response to a number of geristing and impending challenges facing the UK electricity
grid, notably the reduction in electricity capacity margins and highly variable generation costs,
there is growing interest in demand response actions wiagthelp to reduce peak electricity
demand at the local and national levels. Thssertatiorfocuses on the potential of domestic
interventions to reduce peak demand. Firsthpifiute resolution domestic electricity data is
disaggregated into appliandgpes according to an algorithm developed for this project.
Subsequentlythree peak reduction interventions are modelled in order to identify the potential
reductions which these interventions couébult in The three interventions which were
considerd were to supply lovenergy lighting, switch off cold appliances and prohibit electric
shower use during peak tismidJpper bounds for each of these interventions were found to be
15%, 7% and 0.4% of peak electricity consumption for each of the interveméspectively.
These results are deemed to be significant redwsatiopeak demand from the perspective of

a distribution network operator and may serve to avoid or delay investments in network

reinforcements.
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1. Introduction

1.1.Context

In response to a number of significant challenges facing the electricity industry at present and
throughout the coming decades, there has been significant interest shown from governments
and industryplayers to understand the impact which domestic demand side response and

associated domestic electricity efficiency measures could play in resolving these issues.

1.1.1.Variation in the Cost of Generation

Despite most customers being charged a flat rate foedtic electricity of around 13.5 p/kWh
(E135/MWh) (Energy Saving Trust, 2014dhere is substantial variation in the cost of
generating electricity during a typical day. This variation in the cost of gamgedéctricity is

shown below[figurel), for the average ofli 28" October 2011. The general trend observed

is a trough in generating costs overnight whilst demand is low, folldyeadsmall morning

peak and a larger evening peak. Over the course of this month peak generation costs were 2.4
times greater than base generation c@Blexon, 2014) This variation arises from the
requirement for differentypes of power plant to be active in order to meet demand and in

particular the cost of the fuels which are used by the different plant types.

Generation Cost (E/MWh)

00:00

01:00
02:00
03:00
04:00
05:00
06:00
07:00
08:00
09:00
10:007
11:007
12:007
13:007
14:007
15:007
16:007
17:007
18:007
19:007
20:00
21:00
22:00
23:00

Figure 1. Average of the cost of generation by settlement period during the&8tOctober 2011,
Data source(Elexon, 2014)

This large variation in generating costs provides the basis of time of use (ToU) electricity tariffs
which would see customers charged more for using electricity during peak ¢mmsaging

a shift inelectricity usage to ofpeak times and as a result smoothing the peaks and troughs.



1.1.2.UK Electricity Capacity Margin

In recent years the gap between plant capacity and peak demand, known as the electricity
capacity margin, has been slikiimg which could lead to the risk of blackouts in theited
Kingdom (UK). The major causes of the shrinking electricity capacity margin are the
decommissioning of ageing power plants, increased dependence on gas imports and tough
environmental targe{®©fgem, 2013a; Royal Academy of Engineering, 20T8)s problem is
summarised in a recent reportthg Office of Gas and Electricity MarketSfgen):

AWe continue to expect t h ay histoacallg iom s  wi | |
levels in the middle of the decade and that the risk of electricity customer

disconnections will appreciably increase, albeit from reag r o | (©fgen] s . 0
2013a)

Analysis into future trends on the eledtyacapacity margin suggests that therdeed capacity
margin® will continue to decrease for a further 2 ye(iigure?2).

10%

6%

4% -+

De-rated capacity margin [%]

2%

0% +
2013/14 2014/15 2015/16 2016/17 2017/18 2018/19

Year

= = Low Demand Reference Scenario — -High Demand

Figure 2. Predicted @-rated capacity margins for the Reference Scenarioamsdciatedlemand
sensitivitiedn the UK image Source(Ofgem, 2013a)

The trend is expected to trough in 2015/16 at which point the capacity margin willtbegin
grow again. The growth in capacity margin after 2015/16 is attributed to an anticipated decrease
in peak demand due in part to energy efficiency meaghiegsonal Grid, 2013)

1 The derated capacity margin considers the average excess in supply (compared to winter peak demand) rather

than the absolute plant capacity, an important distinction as the proportion of intermittent generation sources on
the grid increases.



1.2.Related Projects

1.2.1.Energy and communitieproject
The data for this project has kindlyTHeeen

role of communitybased initiatives in energy saving This project wa s

researchers at the Universgof SouthamptonReading, Exeterral Westminsteand funded
by the Economic and Social Research Council (ESESRC, 2014a)

The energy and communities project provided two groups of properties with loft and cavity
wall insulation. Additionally, the test growpas involved in an ongoing community project to
increase awareness and educate particigantssing less energy. The aim of the project was

to identify the impact that a community based initiative could have on domestic energy usage
reductions(ESRC, 2014a)For the purposes of thenergy and communitigsroject power
readings were recorded at short-g&cond) time intervals for a sample of51dwellings
(Bardsley, et al., 2013)

1.2.2.SAVE project
The purpose of the current project is to inform the potential peak load reductions which may
be achieved by the upcoming Solent Achieving Value from Efficiency (SAVE) project, by

focusing on a real dataset provided bydhEner gy and prGectmmuni t i es 6

The challenge addressed by the SAVE project is to identify the extent to which energy
efficiency interventions can contribute to peak demand reduction. More specifically, whether
energy efficiency interventions can delay or mitigate the need for a diginboetwork
operator (DNO) to invest in network reinforcements when substations are close to reaching
peak capacityOfgem, 2013h)

1.3.Aims and Objectives

This project will attempt to predict the impacts energy efficiency intéiwes could have on
domestic electrical demand profiles by characterising the demand profile of a number of
dwellings from an existing dataset into its component appliance parts and modelling demand

reductions.
The project aim will be achieved accordinghe following objectives:

1) Formulate an algorithm which is capable of deconstructing measured electricity usage

profiles of dwellings into their component appliance parts.

pr



2) Apply this algorithm to a knoW®nmrgydaad as et
Communitie® pr oj ect, i n o rndeage profite ofithdse prapertiey. t h e

3) Calculate the total reduction in peak electrical power that could be achieved for these
properties under a range of interventions.

4) Provide an estimate of the demand reduncthat could be achieved layi S A Vtigpe

interventionfollowing energy efficiencyapproachs.



2. Literature Review

2.1.United Kingdom Smart Meter Roll Out

2.1.1.Scope of the UK Smart Meter Roll Out
Smart meters represent a significant opportunityefectricity networks across the world to

increase awareness of electricity usage among the domestic consumers attached to these

networks.

Over the course of thadt 4 years the Ul§government has been involved in a consultation
process on the potential kadut of smart meters. The result is a plan to update all 53 million
gas and electricity meters in the UK with
small businessg®ECC, 2013a)The responsibility for the rebthut lies with energy suppliers

who are required, where it is cesficient to do so, to complete the installation across the entire
country by 2020, however the government does acknowledge that this may pose a significant
challenge and accept a completioteraf 99.25% by 202@Energy and Climate Change
Committee, 2013)In order to conduct the roll out as economically as possible the government
suggests that energy suppliers shoulsbperate in order to bring abt the greategiossible

level of efficiency for the project.

I n order for the smart meters to meet the
smart meters which are to be installed need to be capable of meeting the following functional
requirements. They must be able to record and register voltdgels would allow them to

detect power outagethey must have load control capabilities in order for network operators
to potentially be able to remotely control domestic loads in the future, they must be suitable for
implementing ToU tariffs and they must lable to communicate between the data and
communications company (DCtand the consumers in order for a variety of demand side
management strategies to be implemerdedh later stagéEnergy and Climate Change
Committee, 2013)

2.1.2.Anticipated Costs and Benefits of the Program
The government have outlined a range of qualitative benefits for consumers following-the roll

out of smart meters, which include the following:

2The DCC isa company which will be appointed by the government to handle all the data associated with smart
meters. It was decided that one company would be responsible for all data, in order to facilitate easy switching
for consumers between different energy supliwith the aim of increasing competition in the energy market
(Energy and Climate Change Committee, 2013)

o
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1 ASmart meters give you near real time information on energy esressed in pounds
and pence
AYou will be able to better manage your energy use, save money and reduce eimissions
ASmart meters will bring an end to estimated billingou will only be billed for the
energy you actually use, helping you budget better

1 fAEasier switching smoother and faster to switch suppliers to get the bestaeals
These are the benefits I|(DEEG 20d3b)on t he governn

The economic case set out Bygem suggests the programmdll cost £11.3bn and will
provide benefits worth £18.6bn. Benefits are presumed to be derived mostly from energy usage
reductions and savings in industry processes. All costs and benefits will be absorbed into
consumer 06 s (DEGCe20D).\A ddiailed breakdown of the cdsenefit analysis has
proved difficult to source, a concern echoed by members of the Energy and Climate Change
Committee (ECC), who have requested that the Department of Energy and Climate Change
(DECC) publish futher information relating to the benefits of a smart (eidergy and Climate
Change Committee, 2013)

Overall, DECC assumes a bill saving of around 2.8%, however it is uncertain how much of this
comes from domestic energy eféiocy interventions, time of use tariffs or reduced

administration costs for energy suppliers.

However, the smart meter impact assessment states the following 2 benefit categories. The first
is improved information to the network which is made up of rednstin electricity losses,

more information for targeted investment in grid strengthening and more efficient management
of power outages. These benefits are believed to be around £1bn (presumably per year,
although this is not explicitly stated anywher)e other benefit category considered by the
impact assessment are related to load shifting due to time of use tariffs resulting in reduced
peak plant operation. These benefits are estimated to be around £900m (again it is not stated

whether this is totadf per yearEnergy and Climate Change Committee, 2013)

2.1.3.Government Sources of Supporting Evidence

A number of large scale trials and reviews have been conducted to inform the Utrateart

roll-out . UK trials conducted directly by Of ge
Projectd, OLow Carbon Networks Funtd®. alkhdr bk e

research from outside the UK which has guided thelwasefit analysis includes studies from



the OEuropean Smart Metering Industry Groupbo
and the Wited States (USY Advanced Me t e rdi Regidentiah Feedbachk | v e s
Pr o g r(REEE,R2013b) A number of these studies will be reviewed in the next section,

along with other relevant studies from the literature.

2.2.Smart Metering Case Studies

2.2.1.Introduction to Smart Metering @se Studies

In order to gain insights into the potential impacts that smart metering may have, a number of
case studies, trials and reviews have been analysed to determine the potential scale of energy
usage reductions resulting from interventions, aloitly any areas where further research may

be required and any possible flaws in methodologies. This review will begin by discussing the
studies which were considered by the UK government during the UK smart metautroll
consultation. Next, a number of atiohal large scale international trials will also be

considered, and finally, some more targeted qualitative research will be presented.

2.2.2.Energy Demand Research Project

The Energy Demand Research Project (EDRP) was run by DECC and Ofgem as a series of
trials between 2007 and 2010. The intention of the project was to identify and quantify
measures which may be effective in reducing overall domestic energy use or peak energy use,
with the main focus of the measures being on how consumers react to impraieackee
relating to their energy usa¢g@ECOM, 2011)

The interventions which were considered included: energy efficiency advice, historic
consumption information, benchmarking against other households, engagement through target
setting, smart meters, real time displays, financial incentives, digital media information and in
one trial a community based financial incentive was also tested. The various trials had a total
sample of 60,000 households spread across the UK of whidbOLg@ smart meters installed
(AECOM, 2011)

An important finding from the trial was thfatr almost all interventions across the various trials
there was no significant reduction in electricity demand if a smart meter wasstadted in

the household. The only exceptioren interventions involving clip on real time displays
which provide users with detailed feedback anyway and benchmarking which found a small
reduction in theScottish and Southern Electri8$B trial only, albeit the only trial in which

this intervention was testd AECOM, 2011)



Interventions in households where a smart meter was present were generally more successful,
the report suggests this could be attributed to receivatetthnology itself, options available

with the smart meters and more frequent and accurate feedback and AH@QM, 2011)

Real time displays (RTDs) provide household with immediate information on their energy
usage and ecralert consumers to current high lsvef consumption or high bagsads, hence

they should provide a means for consumers to curb their energy use through improved
awareness. In the EDRP the combination of RTDs with smart meters yielded energy usage
redwtions of around 3% with reductions persisting to the end ofrihls from 20072010
(AECOM, 2011) It is believed that accompanying advice relating to the smart meter and RTD

is very important for the intervention to yieldlamand reductioas consumer engagement is

key and this can only be achieved through a useable display, a concept which will be discussed
later. Surveys identified that the most successful displays showed information related to cost
rather tharpower or @ergy and that C&emissions were not perceived as particularly useful
which seems to followa pattern of howiamiliar consumersre with a metricThe literature
review for this study made the following obs
that RTDs may be useful for confirming an energy reduction action rather than initiating one
and the second is that RTDs are used by consumers to @happliances are off before bed

and when leaving the house. Audible alarms for high consumption were not received positively
and provided no electricity savings. However, traffic light systems were received much more
positively(AECOM, 2011)

A number of trials were conducted which focused on energy advice and historic feedback.
These provided mixed results from 0%% reductions with the most successful trial being

one which provided advice progressively over the coursieofrial (monthly instalments) in

short easy to digest statements. Whereas a less successful trial provided all information in a
more detailed booklet at the start of the fAECOM, 2011)

ARThe message i d&dbeprovalded asadundamental sequiramient, and
historic feedback can be useful, but the details of delivery, and combination with other
i nterventi o(AECOMr2011cr i ti cal . o

A number of other interventions were considededng this project, the results of which are
summarised here. Interventions based on financial incentives were mostly unsuccessful at
reducing overall energy consumption and the effects only last as long as the incentive is in
place. Largely due to thedk of engagement with the websites, web based interventions
showed no real positive effects. ToU tariffs studied in these trials saw effects of up to 10%,



notably, larger shifts were observed at weekends and in smaller households. No total demand
reduction was observed in ToU trials and data related to which appliances were shifted was not
gathered, this is an important area for further research. Further research should also be
conducted to identify which demographic groups were more or less likely toeredeir
consumptioAECOM, 2011)

AThe optimum tariff |l evel s and ratios, an
supporting behaviour <c¢han@eCOMa2014) as yet po

Whilst initial research has been conducted into the area of ToU tariffs by these trials, there is a

clear gap in knowledge which could provide an interesting avenue for further research.

2.2.3.Electricity Smart Metering Customer Behaviourribls

Through its Commissionof Energy Regulation the government of Ireland has conducted
extensive research into customer behaviour to produoe of the most statistically robust
smart metering behavioural trials conducted internationally to @@@ommission for Energy
Regulation, 2011)

There were two key stages to the project, a benchmarking stage and a trial stage. Benchmarking
was used to identify a 6typical d energy cons
the interventionsvhich was then followed immediately by a trial stage where the interventions

were tested for a ye@€Commission for Energy Regulation, 201Hpuseholds were offered to

take part in the trial via a slip which was torn off (pmasibly attached to their bill) and overall

the trial achieved a 30% response rate.

Surveyswere conducted with each of the 5,375 households prior to and after each trial in order
to identify any changes in attitude and to inform the allocation of housetwlappropriate
interventions. Particular attention was paid throughout the recruitment process to ensure that
the participants were representative of the national p{@denmission for Energy Regulation,
2011)

The trials vere a combination of different time of use (ToU) tariff levels and a range of demand
side management (DSM) interventions, includingmuanthly energy statements, monthly
energy statements, electricity monitors or a financial incentive for overall loadti@d and
weekend tariffs. They also received fridge magnets with the rates for each ToU band for their

specific tariff group.



For the trial the ToU tariffs were designed so that the average consumer who made no changes

to their electricity consumption wid not be penalised financially. The different rates were
allocated according to measured system demand peaks in three tier$, 8 Apm(night rate),

8ami 5pm (day rate), 5p 7pm (peak rate) and 7pimllpm (day rate). The range of rates

for differenttariff groups was significant (320 Uuc/ kWh f or the m®&st st e
U4c/ kWh f owvarialbehaeiffs)mitherd is still no strong evidence to suggest any of the

ToU tariffs outperform any of tthiep poitnhge rpsgi nht
which ToU tarifs suddenly become effectig€ommission for Energy Regulation, 2011)

A@mand for peak usage estimated as being
(Commission for En@y Regulation, 2011)

The overall results observed from these trials are as follows: a 2.5% reduction in overall
electricity usage and an 8.8% reduction in peak electricity use. The optimum combination for
reducing electricity usage was-imionthly billing, energy usage statement and an electricity
monitor which resulted in a peak shift of 11.3Z@mmission for Energy Regulation, 2011)

A number of other more general observations were made as a result of these trials:

1 All but one of the intervention trials provided statistically significant energy usage
reductions.

1 It was observed that households with greater energy consumption tend to provide the
largest overall energy savings.

1 Where peak load shifting has occurred it is llguawards post peak and night usage,
as opposed to peeak This is logical since consumetsa n 6 t gy bedore ¢haye r
arrive home

1 The fridge magnet and stickers which demonstrated information related to the ToU
tariff bands were deemed to baccesill in relating the information regarding tariff
bands, with an 80% recall rate.

1 The benefits of the trial were believed to be restricted to behavioural change and not
the investment in more energy efficiency products.

1 82% of participants made some behava change with regards to how they use

electricity in order to gain financial benefit from the ToU tariff.

Thereport also comments @potential barrier to interventions being related to the relatively
small financial benefits associated with behavioural change to reduce peak load, so focussing

on savings may not prove to be particularly useful.
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ABarriers t o pe a lkdifficugdydbidinking behavioureHarmge tebillt o t h e
reduction. These perceptions may have contributed to the current recorded reduction.

This may be hard to address due to exaggerated expectations of savings and similar
exaggerated expectations of consequence$ reducti on i s not
(Commission for Energy Regulation, 2011)

Additionally, the report comments on the link between energy usage andesatiomic
factors They postulate that more affluent households (which aréagdy higher social grade
and educational achievement) are likely to be able to reduce their energy usagesrtieey
havea higher baseline energy usagmwever due to their relative affluence the financial

savings gained from reducing consumptiaould be lower as a proportion of their earnings.

AHouseholds headed by individuals with gre
grade achieved higher levels of reduction than those with lower levels. This was in

part related to the typically higher levef usage associated with these households.

Therefore, the impact of education or social grade on the ability to gain benefit from

t he t ar i f(€asnmissson foriEmergy Regutation, 2011)

2.2.4.Advanced Metering Initiativesind Residential Feedback Programs

The 6Advanced Metering Initiatives and Resi
review of feedback based energy efficiency studies between 1974 and 2010 in developed
countries carried out by th&merican Council foran EnergyEfficient Economyin the US
(EhrhardtMartinez, et al., 2010)

Average savings from feedback measures are found to be in the range T2 %awith direct
feedback, such as real time displays more successfulitimeadt feedback which occurs post
consumption. Measures which provide feedback at regular intervals are more successful than
when feedback is provided over longer timeframes, for instance with energy bills. They also
observe that direct feedback is moffeetive if additional information is provided alongside

total consumption. Enhanced billing achieved 5.5% and real time feedback achieved 7%.
However, for more recent studies focusing on just the US, energy savings were lower than the

averages recordedrass the entire sample of stud{&hrhardtMartinez, et al., 2010)

They state that the average overall energy savings are lower for programs targeting load
reduction rather than energy efficiency, as would be anticipatedevwthe total reduction
for load shifting programs was around 3% on average compared to around 10% for

conservation measuré@ShrhardtMartinez, et al., 2010)

They comment that the overall impact of a particular intervention is not solely based on the

average energy savings associated with that intervention but also on the uptake rate associated
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with intervention. Intuitively, the intervention which worked onogatrout basis as opposed to

an optin basis had higher participation rates and hence could achieve higher overall energy
usage reductions. When participation rates are factored into energy usage reduction statistics
the enhanced billing intervention re@scto 2% and real time feedback with additional

information reduces to 6%khrhardiMartinez, et al., 2010)

As noted in other studies the largest savings are likely to come from combinations of measures,
not from feedback dewves alone, such as-home displays (IHDs) plus personalised

recommendation@EhrhardtMartinez, et al., 2010)

It is believed there are 3 main ways that consumers save energy having taken part in a feedback
program. The firsis to modify their behaviour, the second is foast energy stocktaking such

as replacing energy inefficient bulbs and the third is to invest in more energy efficient
appliances such as dishwashers. It is suggested that the main energy savings ardrachieved
behavioural chang@hrhardtMartinez, et al., 2010)

Analysis of the time dependence of energy efficiency interventions suggests that long term
interventions are likely to yield more modestisgs than short term studieZ.7% vs 101%

in the studies considereHowever, t is believed that the longer term studies consisted of a
more representative sample of consumers. Further analysis on studies which considered time
dependence within the study itself found that as lasdeedback was maintained, energy
savings persisted through time, and the authors of the report postulate that the lower energy
savings associated with the longer term studies may be the result of seasonalfeffiexist

of the short term studies wetarried out in summenonths which had higher energy ukes

to airconditioning systemspotential energy savingsere greate(EhrhardtMartinez, et al.,

2010)

The regional and temporal context of the case studies undewrevialso deemed to be an

important factor in determining the energy saving potential of an intervention. For example

they find that studies that were carried outfrom 12790, duri ng t he dener
likely to have higher energy savings thatudies carried out between 1995 and 2010, the
6cli mate change er ab. They also found that

energy savings compared to those in the(EX8hardtMartinez, et al., 2010)
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2.2.5.Perth Sola City Trials
A range of other large scale trials have been conducted across the world which were not
reviewed by the UK government but which can provide further evidence on the impact of

domestic energy efficiency measures, some of which are reviewed here

Launched in 2009, the Perth Solar City Program tested a range of interventions in a sample of
16,000 properties in Perth and surrounding suburbs. The measures included automated air
conditioner demand response for reducing peak [bad,tariffs, enhance feedback from in

home displaygyeosnhsabmat 6erob, behaviour al chan
social marketing and a number of measures to encourage the uptake of small scale renewables
(Perth Solar City, 2012Whilst some of these measures are not relevant in the UK domestic

context, a large number of them can provide useful insights.

The most significant intervention for reducing peak electricity demand was the automated
control of domestic aiconditioning unitsthis resulted in a peak reduction of 2%%nda &
Temmen, 2014)Whilst this intervention may not be directly transferable to the UK (due to the
low penetration of aiconditioning units), it shows the large potential that aatieah control

of energy intensive devices can hase,long axonsumers have enough trust in suppliers to
allow them to switch them off. As the number of heat pumps continues to rise in the UK, itis
plausible that a similar system could be employed fese¢h Encouragingly, of the consumers
who patrticipated in this trial in Perth, 87% said they would be willing to participate in similar
trials in the future, indicating that their comfort was unlikely to have been significantly
impacted by the interventiqiPerth Solar City, 2012)

The ToU tariff trials which were conducted involved a three tier rate system to distinguish
between night time, day time and weekdays between 14:00 and 20:00, where there was a factor
of 3 difference btween the highest and lowest ra@srth Solar City, 2012)his trial found

that the average reduction in electricity was 5%, with a 9% reduction during peak periods.
When coupled with an IHD, this rose to a 6% reductiooverall usage and a 13% reduction
during peak periodéAnda & Temmen, 2014)Alone IHDs were estimated to reduce overall
electricity usage by 1.5% and peak demand byAftla & Temmen, 2014)

A group of 3,500 participants were provided with a home eco consultations, in which a
consultant would provide a 90 minute audit and discussion with residents to inform them on
how to decrease their energy usage. This strategy resulted in a 12% reducii@raih

electricity usage and an 8% reduction in peak dem@mtla & Temmen, 2014)This
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intervention was received very positively by residents with 87% of participants rating it
positively (Perth SolacCity, 2012) Whilst these results are very positive, no indication in the
paper is given the longevity of this effect and hence it is not clear how long energy reductions
would be expected to last for.

A similar strategy, of providing advice on eneggficient behaviour was assessed through the
behaviour change program, in this case participants were given feedback and recommendations
over the phone on various occasions. This trial saw slightly more modest results than the home
ecaconsultation of 7.% overall electricity usage reductions and peak demand reductions of
7%. One group of participants was provided with a combination of the behaviour change
program, home eco consultation and an IHD. In this trial total energy usage was reduced by
21% and pak demand reduced 17% which are very promising results and suggest that using
multiple mediums to promote energy efficiency could be even greater than the sum of their
parts(Anda & Temmen, 2014)

The entire Perth Solar City ggram was supported by an extensive marketing campaign
including; cinema and print advertising, billboards, and sponsorship of local events. The effects

of this marketing campaign are believed to have reached beyond just the properties who were
involved int he i ndi vidual trials to other househo
marketing campaign is believed to be around 1.6% reduction in overall enel@eubeSolar

City, 2012)

2.2.6.Italian Smart Meter Roll Out

With a Hgh penetration of smart meters in Italy there has been scope to conduct large scale
analysis of domestic energy efficiency interventions. One such trial involves testing the
efficacy of ToU trials to reduce electricity demand across a sample of 1446hblissen
northern I|Italy wusing one ye@arrsi,&01% dhettahiff of da
system segments electricity usage into time segments of peak apelakffwhere peak is

between 08:00 and 19:00 on weekdalise difference in rates is low, 90 ¢ / kawdv.1

U c / kfaWipeak and ofpeak respectively. The authors assume that appliance design and

controls are constant between the 2 consecutive years.

In order to remove weather effects on electricity consumptiey remove any data points
where there is a greater thatCAdifference between the two years for the same time and day

slot. This exclusionary principle was responsible for removing around 7% of data from the
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dataset. Data was then aggregated achesddtaset in order to be able compare the daily load
profile under a standard tariff and a ToU tafbrriti, 2012)

Surprisingly they find that when using a ToU tariff consumption actually rises B%013he
average houseld now pays 5.31 Euros per day (under ToU) compared to 5.43 Euros per day
previously, a slight decrease as users shift theiswmption away from peak timéSorriti,

2012)

The authors are very positive about the impact Tlwdd tariffs have had on load shedding
during the morning peak. The peak which was originally between 8:00 and 8:30 has now been
shifted to 6:45 to 7:15 andabk reduced from around 0.75 kWh f@Aé&r minute period to 0.71

kWh per15 minute period. Whilst isiclear that there is a consumer response to the ToU tariff,
the peak has essentially been moved from one point in time to another, whether this is beneficial
would depend on whether nalomestic electricity use is also higher during the original peak.

If not it may be more beneficial to have staggered prices during the shoulde? (Eviidi,

2012)

For the higher evening peak, it is clear that consumers are avoiding using electricity during
peak times however as people amev waiting until after 19:00 to use electricity there is an
increase in peak demand just at a later time. Across the 41 substations which were involved in
this study, 75% actually experienced an aggravation of peak demand problems when moving
to the ToU ariff (Torriti, 2012)

2.2.7.Qualitative Studies on Smart Meters

All of the trials described previously focus on identifying the average effect that an intervention
has on a sample of households which is very important in detegrirerscale of the impacts
each intervention may be able to provide overall. However, blanketubthf measures may

not prove to be the most cesfficient method of making energy usage savings. An alternative
which has been considered through the tptale work of the following authors may be useful

in helping to identify households where certain measures show more promise than others.

2.2.8.Analysis of Customer Reviews
A recent paper by Buchanan et al, 2014, focuses on using product résidaus electricity

usage monitors obtained from an internet review site to identify benefits and drawbacks of real

time displays. The reviews are analysed qua

3 The shoulder period is the time directly before or after the peak period
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met er so. There ar e t hthiesudykWhy doausessavant energyi nt et
monitors? How do they interact with them? What is the outcome of the interactions?
(Buchanan, et al., 2014)

By identifying patterns and common positive and negatives aspects of the meteasdh et

al (2014) are able to identify some of the key benefits and drawbacks of using electricity
monitors. According to their analysis consumers predominantly buy energy monitors for
financial reasons and less so for environmental reasons, whichssutjyet people are more

interested in how monitors would benefit them as opposed to how their consumption impacts

the environment. They identify that when energy monitors are used successfully, the process
wor ks by enabl i ng c¢ onrsygemegy ssage into their eoastiousness r g y
whereas previously it was an abstract concept. Both of these points are consistent with findings
from the EDRPs surveys that people are more interested in displays which show money, rather
than energy or C®emiss on s 0, as they can visualise it n

motivation to reduce energy uguchanan, et al., 2014)

The authors claim that energy monitors encourage consumadopt the following actions:
experimet with electricity use, save money, switch off appliances, buy more eco products and

encourage others to use less energy.

The main drawbacks of electricity monitors which were identified by this study were technical
difficulties with the monitors, inaccate readings and that the monitors have a novelty effect
which wears off eventuallifBuchanan, et al., 2014Jhis means that it is important to create
monitors which are easy to use, provide relevant and accurate informaticio @rovide
monitors in a situation where consumer engagement can be maintained through additional

information.

2.2.9.Residential Engagement with Energy Conservation

Murtagh et a[2014) have reently published a paper whitdoks at how different households
regard energy efficiency measures and energy usage in general. The authors believe that
placing too much emphasis on the average energy usage reduction of a particular intervention
IS obscuring important patterns in the effects of interventions for indaVidouseholds and

hence is missing an important opportunity to target interventions more effectively based on
household characteristi¢slurtagh, et al., 2014)They focus on feedback via IHDs and adopt

a qualitativemethodology to arrive at their findings.
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The sample consisted of 21 properties in different social, economic and geographic contexts
around the south of the UK in which interviews were conducted with the residents. One of the
key findings of the study wathat the majority of households (17/21) who had an energy
monitor for over 6 months were not using the Itiurtagh, et al., 2014Pespite the majority

of the sample not using the IHD, they were actively trying to reducestheigy consumption.

AThe | HD provided information and enabl ed
but overall, the participants demonstrated energy saving behaviour before and
outside of monitor usage, and drew on knowledge on electricity use beyond that

of fered by(Murthgh, emab, 8014) or 0

Analysis of the interviews allowed the authors to categorise the households into 3 types in a
20:60:20 split as monitor enthusiasts : aspiring energy savers : enereggctia a
classification which they developed themselves. The four households which made up the
monitor enthusiast group were largely motivated by a mixture of financial and environmental
reasons for their engagement with the monitor saving energy, despite theotmeholds
coming from a range of income brackets. The aspiring energy savers were again largely
interested in saving money and considered that even small savings were worth a small amount
of effort. However, it was noted that there was a large rangeg#gement across this group.

The final gpup showed very little interest taking action to save energy despite in some cases

acknowledging the moral requirement to dqgairtagh, et al., 2014)

2.2.10.The Importance of Smart Metelnterfaces

A paper by Kerrigan et 4R011), is predominantly focused on the usability of smart meters
and how people interact with them. They achieve this by setting users the task of retrieving
particular information from a commonly used smart meted w®oss Italy by the energy

c 0 mp a n vy, of which thdredare currently 32 million installed.

They find that 69% of the time users were unable to successfully retrieve the desired
information from the smart metéKerrigan, et al.2011) In general users blame themselves

for failure to reach the desired information as shown by a survey at the end of the study,
however a number of strategies are suggested which could improve the usability of this smart
meter. The first of thesstrategies is to use symbology and language which is easy for the user

to understand, in particular to av(erriganj ar gon
et al., 2011)Another useful addition to this meter wound the inclusion of a back button, in

case users make a mistake whilst navigating the meter. Finally it is suggested that displays

should be easy to read (perhaps including back lighting) and larger enough that text can spread
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across as few views as pdssi(Kerrigan, et al., 2011)These considerations are important as
the design and usability of smart meters could have a significant impact on how well

interventions based on smart meters can achieve energy savings througigagement.

2.3.Domestic Electrical Load Disaggregation

2.3.1.Introduction to Load Disaggregation

In order to shed light on the composition of domestic load profiles, with the aim of identifying
which appliances consumers are willing to shift away from peak amé&sonsequently which
appliances to targewith intervention a growing body of work has focused on domestic
electrical load disaggregatioifhis involvesusing the total load profile of a property and
attempting to separate the profile into componenliapge parts. The methods used to achieve
disaggregated loads vary depending on the resolution of the data (how frequently
measurements are captured),thaablescaptured in each time step and external information
available about the properties, alonghathe desired level of detail of the output, creating
highly context specific methodologies. This review will assess a number of the common

methods whiclappeain the literature.

2.3.2.Multivariate high-resolution methods

When high resolution data (metexadings recorded at 1 second intervals) for a number of
variables is available it is possible to build highly accurate disaggregated load profiles, by
searching for appliance 6signaturesé. A numb

The methd described in a paper by Chahine gR8l11) considers voltage and current which

are turned into real and reactive power. Changes in the various features of the total load profile
are detected and the relevant appliance is deemed to be turned on gctmnaiatching

changes against an appliance signature database. The paper focuses on characterising different
appliance signatures according to the probability distribution of a number of éZbatsine,

et al., 2011)

Similarly a paper by Figueiredo et @012 looks at active power, reactive power and power
factors to determine typical appliance signatures which can then be extracted from the load
profile according to changes in the total demand pr(figueiredo, et al., 2012)

2.3.3.Probabilistic lowresolution methods
In situations when high volumes of measured data are not able to be captured, for example if

the sample of propertiesisverylayger i1t i snét cost efdnidata ent t
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for a large number of variablethen it is necessary to use alternatives means to estimate

disaggregated load profiles.

Akbari (1995 suggested an algorithm to disaggregate hourly whole buildings loads by
considering the temperature dependendbeetlectrical load at hourly resolution to determine

the heating/cooling load. End use profiles are determined by firstly generating end use profiles
from building audit data simulation and then adjusting these according to measured data
(Akbari, 1995)

The first part of the algorithm is to separate the load into a temperature dependent part and a
temperature independent part through regression analysis of outdoor dry bulb temp against
load. The temperature independent pattén simply allocated to lighting and miscellaneous
according to the results from the modelling conducted based on the siteTaagialso state

that the sum of disaggregated loads is constrained at hourly intervals to be the same as the
measured loa@Akbari, 1995)

They find that the algorithm is successful in predicting end use profiles up to around 30% of
actual measured data when they compare derived against measured profiles. However, they
also note that there is a stdogtial difference in the pmrmance of the algorithm for two
different building typegAkbari, 1995)

Similarly to Akbari (1995) Birt et al (2012 suggest a methodology which considers the
temperature dependence of loadse Tdisaggregated profiles obtained in this paper are
achieved through a statistical modelling methodology based on external temperatures to give a
base load and active load estimate for individual properties, along with heating and cooling
season gradientghich could then be applied to external temperature data to estimate the active
and passive loads of individual properties at the hourly resol(Biot) et al., 2012)

A paper by DominguedNavarro, et al(2009 looks at loaddisaggregation as an error
optimisation problem between pdetermined expected load profiles of different appliances

and actual recorded data. The shape and size of each appliance profile is capable of changing
during each movement of the optimisationoaithm, with the aim being to minimise the error

between the modelled profile and the real dB@minguezNavarro, et al., 2009)

Work carried out by Richardson et(aD09)focuses on generating 1 minute resolution lighting
data for dwellings, using a probabilistic method. The tool they have built is available as an

excel example online. The mhed uses occupancy, irradiandata and sample household
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lighting characteristicgy a MontyCarlo simulation in order to generate a theoretical lighting
profile (Richardson, et al., 2009)

2.3.4.Characterising Appliance Loads

Gruber et al(2014 propose a probabilistic method for determining the total demarad of
property based and synthesised appliance type data, i.e. the aggregation of different appliance
types. An interesting aspect of this research is the classification they have used for the various
appliances found in dwellings, they focus on the commogeugsaits of each appliance to
determine which category the appliance should be part of rather than the end use of the
appliance, which leads to categories containing fridges and television base loads grouped
together and television active use falling iraoother categoryGruber, et al., 2014)

Identifying a practical grouping of appliances will égsentialn this project.

An article by Kilpatrick et a(2011)describes a methodology for disaggregating domestic load

profilesinto appliance types. This methodology suggests adopting the following:stages

1) The firstis to identify the minimum power usage of the property, it is assumed that this
is representative of the standby power requirement or base load and cant®@mply
subtacted from the profile.

2) Next the cold cycling component should be identified and removed according to the
cold parameters (these will be discussed in the rdetbgy section of this report).

3) Once the base load and cold cycling profiles have been remargedspikes associated
with heating elements can be identified and removed. These are typified by short
intense spikes in energy demand, leaving a profile consistitighting and residual

loads.

This article provides an interesting starting point fer development of an algorithm suitable
for this project. Particularly interesting are the categories of appliance type which are used
(Kilpatrick, et al., 2011)

2.3.5.Delta Form of Load Profiles

Similarly to methodologies describ@dthe section on multivariate higlkesolution methods,
Liang et al(2010, look at a variety of electricity characteristics: Current, voltage and power,
to create appliance signatures which can then be identified from withiotéherofile load

profile.
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An interesting aspect of this study is the way they considér dsnapshot form of the load,

which is the total power, currergtc. observed at any one tinbeit dso a delta formyhich
demonstrates the change that becurred in the profile betweeme point in the time from the
previous point. They postulate that as long as the snapshot interval is short enough (~1 s) then
by considering the changes in load it may be possible to identify appliance sigflatamgs

et al.,2010) This could have potentially useful applications for this project as high resolution

data is available.

2.3.6.Estimating Demand Responsiveness

A previous study on the demand responsiveness of different appliance types, uses the standard
load profile ypes published by Elexon to estimate the total load profiles in an area of Bath,

UK. The authorsé then esti ma iddeasiblybe impactedp or t i ©
by a demand response action, in order to predict the demand responsiveness t€ domes
electricity throughout the dagyfamidi, et al., 2009)The findings from this studgre presented

in FigurelFigure3.

Percentage of Total Demand

Time Hours

Figure 3. Total percentage responsiveness which is identified as possible at that timglaadagi,
et al., 2009)

The results from this study are interesting, in that they aim to provide an upper limit for what
could be achieved from generic set of interventions. One key weakness of the analysis which
could be addressed by the current study is the use of synthetic data for the generation of
appliance load profiles. Additionally by focusing on more specific interventions, the findings

from the currentissertatiorcould add interesting knowledge to the area.
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A further study presented by Soares ef2014 uses the number of dwellings in an area and

the appliance ownership rate in order to simulate appliance load type profiles. Tdfdes p

are then used to determine the proportion of domestic energy in a particular area which could
be shifted from peak, acading to a set of assumptio(fsoares, et al., 2014)

The assumptions are that loads with a thetai@sn have the set points adjusted during peak,
in order to save 5% of the energy, interruptible loads will have a reduction in electricity of 10%
during peak, which will need to be repaid at a higher rate (15%) durinmeakf periods. And

that loads with can be shifted wilbnly be used out of peak timéoares, et al., 2014)

Interestingly, the authors identify various appliances whose energy consumption can easily be
shifted away from peak. These appliances are waghiachines, tumble dryers and dish
washers(Soares, et al., 2014They are particularly suitable for load shifting interventions
since they generally only need to be used once per day for a siddtt{aur) cycle and for

the nost part delaying this cycle wold not cause significant inconvenience to the user. Whilst
these loads provide a significant opportunity for peak load reduction, the unpredictable nature

of the appliance cycles would make them challenging to extract ftotaldoad profile.

The authorsdé claim that savings of (Boareswe en
et al., 2014) This study is based on data from Portugal, where domestic load profiles are
substantially differet to the UK due to the use of air conditioning units in response to
differences in climatic conditions. Similarly to tlldamidi, et al., 2009paper, the appliance

load profiles are simulated based on more general data whifieaproject aims to make

predictions based on measured data.
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3. Methodology

3.1.0verview

The main aim of this project was to estimate the maximum impact that a range of interventions
could have on reducing the peak domestic electrical Wwhith occurgduring the eveningn

weekdays.

This was achieved by disaggregating the total demand profiles for a number of properties into
their constituat base load, cold applianceeating elemenand lightingprofiles and then
aggregating the various appliance [desf across a sample of properties in order to determine

the extent that each appliance type contributes to the electrical load peak. Once this has been
determined, an upper bound for the impacts that a range of interventions could achieve is
estimated. Tis then gives an estimate of the maximum impact that interventions could have

onreducing peak electricity usage, this can infoine upcomindgSAVE project.

The SAVE project aims to determine whether energy efficiency interventions can be used to
relieve te strain on electricity substations which are close to reaching maximum capacity, as
opposed to employing more traditional network reinforcement measures. The project aims to
trial a range of interventions including technology deployment, commercialtivesrand
engaging residents. The technological measure, involves providing residents with low energy
light bulbs in order to decrease electricity usage associated with lighting. Engagement measures
are focused around using data to tailor engagement cgingpand commercial incentives
involve creating doU tariff in order to encourage residents to shift their electricity usage away
from peak timegOfgem, 2013h)

3.2.Dataset

The data used in this project was provided byetergyand communitieproject which aims

to identify the impact which community based initiatives can have on reducing energy
consumption in dwelling€ESRC, 2014a; University of Southampton, 201Z&g project was
undertalen by academics at the Univeissiof SouthamptopReading, Exeter and Westminster
and was funded by tHeSRC

The dataset consists of high temporal resolution power readings for a samfepoderties
over the course of 3 years from 2011 to 2(B&rdsley, et al., 2013Amongst other datasets,
total electrical power usage for each of the households was collected for each one second

interval during the trial, along with surveys and interviews conducted with eacheof th
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households. The survey data was gathered for the purpose of identifying relevant attributes
which could be used to characterise households. Data was gathered using a commercial

monitoring system called O0Al ert Mebod.

For the purposes of the current projéut tata has been aggregated into one minute intervals

in order to reduce the data volume. However, by maintaining relatively high resolution, patterns
of interest in the data have been preserved. These patterns are used to identify trends in
electricity ugge which can be used to identify different types of electrical load at a particular

point in time.

The data aggregation and cleansing processes were carried by researchers working on the
ACensus 20220 project. Thi s agns a geaerating smalme d t
area socieeconomic indicators based on household electricity use to replace the previous time
consuming and cos-tali(EpRG2014b; Dreversity of Soateamsam,s

2014b)

The time period of the data used for this project is the28" October 2011 and for the purpose
of determining the lighting load additional data frath- 28" June 201has also been used.

Within the overall dataset there were a large number of grepaevhich had incomplete data
for the period under investigation. Properties with substantial periods of missing data, i.e. more
than a day or multiple gaps of more than an hour were rejected from the sample for this project.
Fortunately it was still pasble to select a sample of ptoperties which had sufficient data to

proceed with the project.

3.3. Algorithm

3.3.1.Background
In order to disaggregate total load profiles into individual appliance type profiles for each
property it was necessary to create an algorwhich could identify which types of appliance

were likely to be active at any particular time interval.

With the 1 minute resolution data which was available for this project the decision was made

to focus mostly on relational properties between thegy usage at one time interval compared

to the power usage at times prior to and following the interval of inferesh e t er m &i nt e
interesto wild.l be used to describe a unique

on directly) as oppeed to probabilistic methods based on time of day (more relevant with
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lower resolution datasets) which were only used to help determine the lighting load for each

property at later stages in the analysis.

Due to the large volume of data involved in thisject, the algorithm was designed to work

as autonomously as possible, in order to minimise manual data analysis. With this in mind a
tool was created in Microsoft Excel whigtes able to generate base load, heating element,
electric shower, and coldppliance profiles from raw data with just a small number of

parameters related to the cold cycling requiring updating.

3.3.2.Data Preparation

The algorithm which deconstructs the total load profileadxyy generating a matrix of power
usage readings based on datd ame from the raw data which exists as a long list of meter
readings for each minute interval across the month, as showigimg4. In order to achieve

this in Excel it is necessary to create separate values for the date and time from the combined
date time stamp which was provided. Taections required for this are:

A=INT(CELL) o
which provides an integer value for the dael discounts the time element and:
A=MOOHLL, 1) o

which returns the decimal remainder once the integer has been subtracted and hence results in

the time element from the datiene stamp.

Once the gearate date and time values are available the data is pivoted around these two criteria
to form a matrix of the power readinffSigure4). For this project it was dated to perform

this step at the beginning of the process in order to have all of the subsequent profiles created
in this format, whereas if this step is performed at a later stage it would need to be performed
multiple times to translate the data from Hagious profiles into thisnatrix format.
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Figure 4. Screenshots to show the initial data manipulation processes occurring during the algorithm.
In particular showing the transformation of the dataset to a matrix format

3.3.3.Base Load

Once the power readings have been transformed into an appropriate format the disaggregation

process can begin. Research into the field of load disaggregation suggested that a suitable

starting point for many algorithms is to identify the base load, a<#n be identified as the

minimum power usage of a property and hence is straightforward to calculate, this is then

assumed to be a constant throughout the(ddyatrick, et al., 2011)

There are two important points wonttentioning relating to the base load calculation in this

project. The first is that the base load has been calculated separately for each day in the sample,

since it was deemed

possi bl e

t hat

resi

dent 0 :

For example if the users were to go on holiday for a week they may make a conscious decision

to turn off appliances at the plug rather than leave them on stadigrhaps during the trial

they may purchase a new appliance which contributes to the base/toetd would not have

been present at the start of the trial period, hence the decision to calculate a variable base load.
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The second consideration is related to problems with incomplete data. Although steps were
taken to avoid using properties which hay&asections of incomplete data, for some of the
properties included in the sample there are still short periods where the data is incomplete, due
to the malfunctions with the monitoring equipment. As a result, the decision was made to
calculate the base&d as the lowest nexero power reading for each particular day. The main
problem which manifests itself when calculating the base load in this project is when there is
an interval prior to or directly after a period with no data, as these sometimea benadl

number of the 1 second power readings contributing towards the average for that minute, hence
making the average for that minute much lower than the true value. The base load algorithm
may then pick this up as the base load as it could be thetlowesero but it may actually be

lower than the real base load, so the base load profile is believed to be a slight underestimation
of the actual base load.

In Excel a formula to calculate the lowest re@r0 value in an array is:
i = S MAARRAY,COUNTIFARRAY, 0) +1) 0

Throughout the algorithm there are additional stages to ensure that the sum of the disaggregated
profiles which are created by the algorithm remain constrained at each 1 minute interval by the
observed total value at that time intervifilis is a property which has been built into the
algorithm which was suggested in the literat{/kbari, 1995) For the base load profile, this

is achieved by checking whether the suggested base load calculdtes Iobwest nofzero
formula(above)is less than the observed value at that time interval and in any case where it is
not, (i.e. when there is missing data) a zero is returned instead of the base load value. Once the
baseload profile has been created it is subtracted froentdbal demand profile to return an

intermediate profile which in this project is calledal2.

3.3.4.Heating Element Spikes

The next stage of the algorithm wiaasremove short duration high intensity spikes in electricity
demand which are typically associateith heating elements such as kettles, toasters, hobs and
electric showerg¢Kilpatrick, et al., 2011)According to sources in the literature, the retage

would normallyhavebeento remove the cold cycle profililpatrick, et al., 2011)and this
strategy was tested. However, due to the mechanism which was used to extract the cold profile
in this project improved cold cycling results were observed by first removing the heating
element spikes anthen removing the cold cycle in the following step. This is due to the

significant impact that intense spikes in demand have on the running averages which are used
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to predict the cold cycle profile and hence removing the spikes first allows the cold cycle

running averages to be calculated from a more stable baseline.

There were two methods which were tested for the removal of the heating element spikes. The
first was to consider each time interval and compare the value observed frotalthprofile

at that time to the mean of the 10 cells before and 10 cells after the interval of interest, then if
the difference igdarger than a threshold value, usually 500tk¢n the value is assumed to be

part of a spike and is included in the heating element pradilthe difference between the
interval of interest and the average of the surrounding cells. This comparison is then applied to
each interval in the trial period in order to build up a heating element profile. Whilst this method
works well for short duratin spikes, for example a kettle running for 1 or 2 minutes, it becomes
gradually less effective as the duration of the spike increases, for example when an electric
shower is in operation fomorethan 11minutes consecutively. This is due to the fact that
during an extended spike, the intervals which are used for the comparative average are also
elevated values which makes it difficult for the algorithm to identify whether the threshold has
been met. Alsojt is possible thathe amplitude of the centralalues of the spikes are

underestimated as they are compared to averages which contain more spike elevated values.

In order to avoid this issue, the solution used in this project was to create a range of filters for
various different spike durations. In éddter the 1 minute interval of interest is compared to

the two unique intervals on either side of the interval of interest which become progressively
far from the interval of interest. For example the first filter which tests for a 1 minute spike
compaesthevalue of the interval of interest to the average of the two values of the cells which
are directly adjacent to the interval of interest. The 3 minute filter then checks the interval of
interest to the average of the two values of the cells whictwareells away from the interval

of interest. This process is then repeated up to intervals of 23 minutes. Examples of the first 3
filters are shown below, these represent the formulas to calculate the 1, 3 and 5 minute spike
profiles:

A = | GE(L-(( CELL-1+ CELL+1)/2)>THRESHOLD VALUE, CELL-(( CELL-1 +
CELL+1)/2),00

=]
11

| GEL-(( CELL-2 + CELL+2)/2)>THRESHOLD VALUE, CELL-(( CELL-2 +
CELL+2)/2),0)

A = | GEL-(( CELL-3 + CELL+3)/2)>THRESHOLD VALUE, CELL-(( CELL-3 +
CELL+3)/2),00
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The value for the amplitudef a spike at any given interval is then chosen as the maximum of
the various different spike filters for that interval. The benefit of this method is that it ensures
that even for wider spikes the entire spike amplitude is being included in the heatmenel
profile.

The decision to include spikes of up to 23 minute was to ensure that even in periods with highly
volatile electricity usage, the maximum possible number of spikes were being included in the
heating element profile. It was also consideretbasible problems associated with including

too many features as heating element spikes could be avoided by setting an appropriately high

threshold value.

In most instances the threshold value which was used to determine whether or not to include
an interval as a spike was 500.Whis value was selected as it ensured that on either side of an
event involving a heating element the majority of the spike duration was included in the heating
element profile. Take the example of a kettle which is switchedoorl fminute with a
continuous power usage of 2 kW. If the 1 minute duration occurs so that the first 15 seconds
of usage are in one aggregated one minute interval and the remaining 45 seconds are in the
following one minute interval then the 2 kW spike \Wwbactually appear as a 2 minute spike

of 500 W for 1 minute followed by 1,500 W for 1 mintggure5). Hence the decision was

made to allow spikes as low as 500 Wbt includedn the heating element profile.

a)
= b)
— 1500 0
= 1000
(o
O ) ) ) T T ) ) ) ) T T T ) ) ) T T T ) ) 1

Figure 5. Hypothetical example of heating element spike using artificial data. In this example three
identical spikes in terms of intensity (2 kW) and durations@&tbnds) are shown as they would
appear in the aggregated data if a) all 60 seconds of activity fell within the samreufe interval, b)
the first 15 seconds of activity appeared in one interval and the remaining 45 appeared in the
consecutive intervalral c) the 60 seconds of activity bridged the two aggregated intervals evenly.
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In a small number of properties it was necessary to make an exception and increase the

threshold value. This happened in instances where the cold cycling magnitude was particular
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high (greater than 500 W) and the duration of the ON cycle was shorter than 20 minutes, which

meant that cold cycling features were being picked up as heating element spikes.

Once the heating element profile was created it was subtracteddtaldto create a new
intermediate profile calletbtal3. Again measures were included to ensure that the resultant

sum of disaggregated profiles would be constrained by the observed total profile.

3.3.5.Electric Showers

Heating element spikes associated with electrmavgins were of particular interest to this
project due to their large power usage and relatively long duration, making them good
candidates for peak demand reduction interventions. With this in mind an additional filter was
applied to the heating elemenbpfite. Since electric showers are unique in that they have a
power requirement of ovat kW (Walker, 2009) it was assumed that any spikes ovén

were associated with electric showéns order to account for the peak reduction effects
associated with aggregation described previousl¥igure 5). So two new profiles were
created which separated hkating element spikes over 6 kW from those below 6 kW and

created an electric shower profile and a separate residual heating element profile.

3.3.6.Cold Appliances

The nextstagein the algorithm isd create and subtract the cold appliapo#file. The most
suitable method for generatingcald applianceprofile was based on comparimgnning
averages. This stage in the process is the most manual of the different components of the
algorithm since it requires the input of three factors which need to be mada#tdimined

from the data set, these three factors can be determined by observing a period of stable
electricity usage, for example over night when appliances are not being switched on and off.
Figure6 below, which consists of manufactured data, shows the three parameters which need
to be determined in order to express the cold cycle of an appliance. These are the length of time
an appliance is on, the length of timue appliance is off and the power usage of the appliance

when it is on.
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Figure 6. Representative example of a cold appliance cycle using artificial data. In order to show the
important parameters used tharacterise a cold cycle

A number of methods were considered when determining which moving average to use for the
cold cycle element of the algorithiihe firstwas to estimate the total length of a cycle (i.e.

from ON and back t@®N again) and then divalthe time into two even segments and the other

two methods were to make the lengths of the period an average was calculated over correspond
to the length of the on or off cycle. Both variations, i.e. on first and off first were tested. For an

example cya@ where the appliance is on for 20 minutes and off for 40 minutes the following
average comparisons were tested, to identify an optimal match.
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Figure 7. Graph to show the various running averages which were considered for theyclihg
stage of the algorithm

Based on the observations from this analysis it was decided that the best comparison of
averages to use to determine whether a cold cycle was on or off was based on the comparison

of an average of the number of cells thathd make up a typical ON period minus the average
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of the consecutive number of cells which would characterise an OFF period, as this provided
the most obvious gradient difference when the cycle is ON compared to when it is OFF. The
next stage of the coldycling algorithm is to determine whether the gradient ofttéedis
negative. This is simply done by subtracting the value of the moving average for the following
cell from the current cell. If the value is below a specified negative threshold theyctbas
deemed to be ON and is given the value of the power usage for that appliance in the cold cycle

profile.

Similarly to the other stages in the algorithm measures were taken to ensure that the value
obtained for the cold cycle profile could not exdélee remainingotal3 value for that specific
time interval in order to ensure that the sum of the disaggregated profiles is constrained by the

total electrical demand reading at all times.

In some properties there are multiple cold cycles present.drinstance the same process is
repeated twice with different parameters correspaniirrach of the observed cold appliaice
The first profile to be removed is the profile with the shortest overall cycle length. Once this
has been removed the same precssrepeated for an intermediate total profile using the
parameters for the longer cycle. This creates a total cold cycle profile which represents th
overall cold cycling pictureThe resultant profile is the uncharacterised portion of the profile.

3.3.7.Lighting

In order to demonstrate proof of concept, a lighting algorithm was developett was
capable to a certain extent of determining the proportion of the total load profile which is
attributable to domestic lighting. The strategy used for this stdigihe analysis varies
significantly from the initial stages of the algorithm which are described above, in that it
requires a secondary dataset and that it is based on differences in the load profile between
summer and winter, rather than short termepa#t in the data. The additional dataset which is
used for this stage is another 28 day periothminutepower readings for the same properties

for the period from ¥ June to the 28June 2011 (the dataset discussed previously runs from
the P! Octoberto the 28" October 2011). Due to time constraints and the large amounts of
manual processing required, it was only possible to run this stage of the analysis on a subset of

the properties. The properties included in the lighting analysis are shown emdipp..

The basic premise of this analysis is to compare the uncharacterised profile of each property in
June against October, between the median sunset times of the 2 months, i.e. 18:15 for October
and 21:21 in Jun@Jnited Kingdbm Hydrographic Office, 20145ince it is assumed that
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significant proportiorof the difference in the uncharacterised loads for these 2 months would
be associated with lightingdoweverthe author does also acknowledge that other appliances,
particularly tumble dryers, may be used more during this time in the winter period which would
overestimate the lighting profile identified by this analysis.

The first step in this analysis is to run the previously described algorithms for each of the
months,in order to generate profiles which have had heating elements, base loads, cold
appliances and electric showers removed. The next step is to subtract the June uncharacterised

profile from the October uncharacterised profile between the median sunset times.

The profile generated by this method only considers the period from 18:15 to 21:21 and hence
it is not sufficient to identify the total electricity usage reduction which could be achieved by
interventions affecting lighting. However it does cover pealesirand hence the method is

deemed sufficient for the purposes of this project.

Survey datawhich is available for most of the properties in the sample, was then used to
identify the proportion of fittings in each dwelling which use low energy bulbs. Hbtiswdas

then used to model the potential reduction in energy used for lighting that could be achieved in
each property if all bulbs were to be replaced with low energy bulbs.

3.3.8.Uncharacterised

Following the extraction of profiles for all the appliance typescribed above, the remaining
electricity usage is grouped into a final uncharacterised profile. This profile makes up the
difference between the sum of the appliance type profiles and the total observed profile. This
profile is expected to include ange of appliances such as televisions, personal electronics,

computing and wet appliances such as washing machines and dishwashers.

3.4.Analysis

3.4.1.Appliance Load Profiles
Once the individual appliance type profiles had been disaggregated at the individuabltbuseh

level a variety of analyses were conducted.

Firstly, oO6typical dé profiles for each of the
averaging the power usage at each time interval during a day across all of the days in the trial
period. Foreach load type standard deviations for different time intervals have also been
calculated in order to identify the variation that are observed for that load at a particular time

from day to day.
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Further analysis involved aggregating each of the load tgpesss a range of different
properties in the sample and a range of different days in order to identify more generally the
typical load profile for that particular appliance, along with the standard deviations which
provide an idea of how that load varfesm day to day. Each of the appliance load profiles is
generated based on data from 51 properties each with 28 days of data available, hence providing
a total sample of 1,428 individual days ensuring statistical significance of the appliance profiles

which have been generated.

By combining those loads it was possible to identify how significant a role each load plays in

the overall load profile for the total of all the properties in the sample

3.4.2.Peak Load Reductions
Once the total load profile was succedsgfulisaggregated into component parts, various

elements of the profile were modelled assuming they had undergone a particular intervention.

The first of these interventions was to assume that all standard bulbs in each property were
replaced with low eneggequivalents. Survey data gathered byehergy and communities
project provided information on the proportion of standard light bulbs in each of the properties.
The observed profile was then scaled for each property to reduce the power usage of the
stardard bulb proportion by 80%, in order to simulate replacing these bulbs with low energy
bulbs which use 80% less enef@nergy Saving Trust, 2014b)

The next analysis aimed to simulate the impact of an intervention to Sifitwbld appliances

during the peak time. This was achieved by setting the power usage of cold appliances to zero
during the peak period. Since there was uncertainty as to the extent of a power surge which
may be experienced once the appliances were allaavée turned back on, modelling was

also performed which reallocated the saved energy from peak to the period following peak.

The final intervention which was considered was focused on electric showers. The modelling
involved shifting all shower eventghich were observed during the peak period into the period
following peak, in order to simulate the impact of prohibiting residents from using electric

showers during peak.
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4. Results

4.1.Introduction to Results

The results chapter of this report is split ink@tmain sections in order to address the two key
challenges of this project individually. The first section focuses on a qualitative assessment of

how successfully the algorithm was able to disaggregate domestic load profiles into individual
appliance typgrofiles. The chapter then moves on to the results of this project in terms of the
identified oOotypical 6 appliance | oad profiles

which may be achieved by interventions targeting these appliances.

4.2.Appraisal of the Algorithm
4.2.1.Base Load

As described in the methodology section of this report, base load profiles were calculated by
taking the minimum nowzero value of the power readings for each property for each day and

subtracting that value as a constandtighout the respective day.

This method has proved to be successful for days where the dataset is complete, however the
method is less successful on days which have missing data as shown by the example below in
Figure8 andFigure9. Figure8 shows that there were 2 days in October 2011 where house 001
had incomplete data, these were theBd 28'. Days of incomplete data are characterised as
days where the total load profile drops to zero. Since this would imply absolutelylizmegp

were switched on, a much more likely cause for null values is a malfunction with the

monitoring equipment.
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Figure 8. Recorded power consumption of house 001 from28th Octobe011at 1 minute
intervals. Axis maximumf 1000 Whas been chosen to highlight bdsad data which has led to
peaks beingruncated

Figure9 shows the base load value that the algorithm has allocatedise B01 for each day

in the month. It is clear that for days which have missing data, the algorithm will sometimes
provide an erroneous base load value which is below the real base load value for that day, as
shown by the base load results for th&.2dowever, when the dataset is complete for an entire

day then the algorithm does a good job up picking up the actual base load, as demonstrated

throughout the rest of the month.
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Figure 9. Base load power consumption identifiedioy algorithm for daily intervals from 1s28th
October 2011
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For the & October 2011 which also has incomplete data, closer observation of the load profile
around the periods of missing data explains why the algorithm still successfully identified the
base load. As shown Wyigure 10, the surrounding values to instances of missing data were
already elevated substantially above the expected base load (typicallyZ2&ltioVé for this

period whereas the base load for this house is expected to be around 80 W). Hence even if some
null values were included in the average for an adjacent time interval (which would lower the

average) in this instance it has not resulted imaller value than the actual base load.
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Figure 10. Power consumption for house 001 on the 8th Oct 2011 between 06:00 and 08:30

In summary, the algorithm for identifying the base load works well and the process is relatively
straght forward, as shown by the successful results throughout most of the example above.
The main problem which can occur is that the base load can occasionally underestimate the

magnitude of the base load, if the data set is incomplete for a particular day.

4.2.2.Heating Elements

The algorithm used to remove the spikes associated with heating elements works well when
peaks appear during a period of stable electricity usage, as shown by the peaks at 08:38 and
18:03 inFigure1l below. In these instances the algorithm is able to almost perfectly identify
the entire duration and magnitude of the peak and return a smoothed profile for the remaining

electricity usage.
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Figure 11. Power consumption data from house 022 for the 21st October 2011. Where total minus
base load represents the total profile with the base load for that day subtracted and total minus
heating elements represents the total profile mthasase load and minus the heating element

profile.

It continues to work relatively successfully even when there are large numbers of peaks
adjacent to one anothdor example during the period between 14:28 and 188urel1l)
and between 16:45 and 18:40durel?2).
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Figure 12. Power consumption data from house 008 for the 8th October 2011. Where total minus
base load represents the total profile with the base load ford#nasubtracted and total minus
heating elements represents the total profile minus the base load and minus the heating element

profile.

There are however a number of issues with the output of the algorithm. The first occurs when
there are peaks with a valbelow 500W (the peak threshold) at the beginning or end of the
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peak. These are caused due to the aggregation and averaging of the load profile to 1 minute
intervals. An example of this feature is obsera88:09 inFigure 11l and can be seen as a

short spike in the profile even once the data has had peaks removed.

The second which can be seen to occur in the above load pFofiled11) between 21:53
and 22:08 is the result of the selection of the widths of the peaks of interest. Since the algorithm
looks at a maximum width of 23 cells, whenever a peak lasts for longer thmmutes then
the peaks on the end will only ever be recorded as half the magnitude, since the algorithm is
working on the average of a npeak against a peak valu#oweverll minutes is still longer

than peaks which have typically been extracted initbature(Kilpatrick, et al., 2011)

4.2.3.Electric Showers

The electric shower profile generated by the algorithm is created based on the modelled heating
element profile. Since the heating element algorithm has alreadyidezdiiied as working
relatively successfully, this provides a strong foundation for the electric shower profile.

In order to validate the results of the electric shower algorithm, one dwelling which presents
the characteristics of an electric shower weadysed. This was done by characterising each of
the modelled electric shower events identified by the algorithm and creating a frequency
distribution of the duration of the events and magnitude of the events (in terms of power usage).
The chosen properfgr this analysis was house 108, for which 45 electric shower events were
identified during the period of thé'1o the 28' October 2011.

The first of the characteristics to check was the magnitude of the spikes which had been
identified by the algorithmEncouragingly, this analysis found that 29 of the 45 events had a
magnitude between 7700 and 8100 W (mean of 7880 W and standard deviation 439 W), all 45
events were within a range of 2500 W (6400i 8900W) and the events were relatively
normally distibuted, as shown byigure 13 below. This suggests that the algorithm is

accurately picking out appropriately sized peaks.
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Figure 13. Distribution of the power consumption of electric shower events observed by the algorithm
for 1st- 28th October 2011 in house 108

The next characteristic of the electric shower peaks which was analysed was the duration of
the events. Similarly to the magnitudéthe events, this analysis found the duration of the
events to be approximately normally distributed with a mean event duration of 5.4 minutes and
standard deviation of 2.4 minutes. The frequency distribution of event durations is shown
below inFigurel14. The results of the event duration analysis suggest the events identified by
the algorithm are likely to be representative of the actual showers taken by thetsesiden
house 108.
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Figure 14. Distribution of the duration of electric shower events observed by the algorithm for 1st
28th October 2011 in house 108

The combination of the analysis of event duration and event magnitude shggy#st electric

shower profile created by the algorithm is realistic and serves to validate the algorithm.

Whilst it is believed that the algorithm generally works well, there are occasionally slightly
higher shower peaks than the expected shower ped#kafodwelling. It is believed this could

occur when the shower peak overlaps with another short duration appliances which gets
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included in the peak profile. In further versions of the algorithm this could be avoided by adding

a narrow minimum and maximuwalue for the shower peaks.

With respect to event duration, events are never found to be unreasonably longer than the mean
duration, however the two particularly short events of just one minute are acknowledged as
being suspicious and it is postulated tietse could be the result of a number of high power
consuming apliances running simultaneouslifor example tumble dryers which typically

have power consumptions in the range 0of2kW and cycle lengths ofi12 hoursalongside

cooking applianceAppendix B)(DSG Retail, 2014a; DSG Retail, 2014b; DSG Retail, 2014c;
DSG Retail, 2014d)

4.2.4.Cold Appliances

Of the various appliance type profiles which needed to be extracted from the overall load
profile, cold appliances proved the most challenging to successfully extract. This was due to
inconsistencies in cold cycle parameters throughout the dataset.

The method which was selected to perform the task of extracting the cold appliance profiles
works well when identifying cold appliances during periods of stable overall electricity usage,
such as overnlg or during weekday afternoomgen residents are not present. This can be
observed in the load profile shown belowHigure15. Once the cold appliance profile which

has been determined by the algorithm has been subtracted from the overall profile, the result is
a smoothed load profile with most cold features ss&ftdly removed. The first 4 ON cycles

are reasonably successfully removed and result in a relatively stable auxiliary appliance profile

as shown in black, with only slight spikes observed at the beginning of some of the ON periods.

A number of issues agswvhen the cold cycle algorithm runs in times of inconsistent electricity
usage. The first which is also observedrigure15, is that the algorithm tends to elongéte

ON period of the cycle in the lead up to a general rise in electricity usage for example during
the last cycle before residents wake up or return from work. This is observed between 04:46
and 05:58 during the cycle belofifigure 15), where the algorithm is allocating nonld
appliance electricity consumption to the cold profile. In this profile there is also a period
between 07:11 and 07:33 for which the altjon has incorrectly assumed the cold cycle should

be ON.
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Figure 15. Power consumption data from house 026 for the 8th October 2011 between 00:00 and
08:00. Where total minus heating elements represents the total profile mirhasthwad and minus
the heating element profile and total minus cold cycle represents the total profile minus the base load,
heating element and cold cycling profiles.

For certain dwellings in the sample multiple cold cycles were observed. In theseasstan
two stage cold appliance algorithm was applied to the data. As the complexity of the cycling
increased, it became more difficult for the algorithm to accurately identify the two cold cycles
(Figure 16). Whilst the algorithm can still work effectively in identifying the location of the

cold appliances being active, it leaves more noise than when an individual algorithm runs.
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Figure 16. Power consumption data from house 001 for the 21st October 2011 between 00:00 and
08:00. Where total minus heating elements represents the total profile minus the base load and minus
the heating element profile and total minus cold cycle represents #h@iofile minus the base load,

heating element and the two component cold cycling profiles.

There are two main circumstances which cause the algorithm to work less successfully. The
first is when the total profile is more unstable such as when residentome and awake,
particularly during weekday eveningsgure 17 shows the electricity usage from house 119

on the 18 from 1600 to 2400 and demonstrates how astabie electricity usage has a
significant impact on the accuracy of the cold cycle algorithm. Due to the large variation in
electricity usage, the subsequent cold appliance profile which was generated shows much more
rapid changem cold cycling than woldl be anticipated.
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Figure 17. Power consumption data from house 119 for the 16th October 2011 between 16:00 and
23:59. Where total minus heating elements represents the total profile minus the base load and minus
the heating eleent profile and total minus cold cycle represents the total profile minus the base load,

heating element and cold cycling profiles.

The second major challenge for the algorithm is when the compressor of the fridge or freezer
is required to run for longewuding an individual cycle (for example when ambient temperature
goods are placed into the freezer) or the compressor does not use a constariiEoaad

cycling profile for house 029 on theflBetween 000000 shown ifFigure18, demonstrates

the difficulties faced by this algorithm when the length of the ON cycle varies from one cycle
to the nextFigure 18 shows that the duration of the modelled ON period of the cold cycle
remains relatively constant, despite the length of the observed ON period varying slightly. The
modelled ON period tends to be present from the erideobbserved ON cycle and it is the

beginning which is occasionally missed out from the modelled profile.
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Figure 18. Power consumption data from house 029 for the 10th October 2011 between 00:00 and
10:00. Where total minus heagj elements represents the total profile minus the base load and minus
the heating element profile and total minus cold cycle represents the total profile minus the base load,

heating element and cold cycling profiles.

4.2.5.Lighting

The lighting analysis condted in this report was implemented according to the details given

in the methodology section. This involved comparing the winter (October) uncharacterised
load profile against a summer (June) uncharacterised load profile. For the purposes of this
projectthe difference was only considered between the median sunset time in October (18:15)
and the median sunset time in June (21:21), however there are interesting characteristics which

occur out of this time frame which are also discussed in this section.

Due b time constraints it was not possible to perform this analysis on each of the 51 properties
in the overall sample, so in order to prove the potential of the method, a subset of 10 properties
from the sample were selected, these are listed in Appéndixe to the smaller sample size,

all findings relating to lighting should be considered carefully and are given subject to greater
levels of uncertainty than other appliance type profiles discussed in this report. Despite the
small sample size, the initiaésults gathered from this analysis are promising and serve to
demonstrate that this avenue could be engoldurther.

The profiles shown ifrigure 19 below represerthe October mean profile, June mean profile
and the difference between the two, for house 015 between 17:00 and 23:59. The two vertical

dashed lines represent the median October sun set time and median June sunethene
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left and right hand sidesspectively. This profile shows that the mean uncharacterised profiles
of both time frames are similar up until around 18:00, at which point they begin to diverge until
around 22:00 where the converggain. The times where these twoofiles diverge
corresponds directly with the time of day when it would be dark in October but still light in
June. In part this is believed to be the result of lighting which is in use during the October
period and hence the difference can be an indicator of the domediitditgfad of a property

in October between these times.
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Figure 19. Average power consumption pro§ilef uncharacterised appliances for house @bsn the
1sti 28thOctober 2011 andsti 28thJune 201between 17:00 and 23:59. Here the Difference plot
represents the assumed lighting load profile for this property in Octéibem left to right the
vertical dashed lines represent median sunset in October and median sunset in June

Whilst peak demand fallsithin the times discussed in the previous example, the morning peak

is another period of the day for which this analysis may also provide useful results, as shown
by Figure20 below. From left to rightthe vertical dashed lines iigure20 represent median
sunrise in June, median sun rise in October, median sun set in Octdbeedian sun set in

June. Again from this graph the efficacy of the analysis during the evening can be observed. It
is also possible to estimate how much of the morning peak (069@0) is due to lighting,

since it is anticipated that there would lzelighting load during that time in June as the sun

has already risen, whereas this period begins in the darkness for October and hence the
difference could represent the lighting load.
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Figure 20. Average power consumption pre8lof uncharacterised appliances for house 014 from the
1sti 28th October 2011 and 1628th June 2011. Here the Difference plot represents the assumed
lighting load profile for this propertyFrom left to right the vertical dashed lines represent median

sunset in October and median sunset in June

Based on qualitative observation of the profiles showfignre19 andFigure20, thelighting

analysis seems tprovide intuitively reasonable results given the relasimaplicity of the
method. The main drawback of this method is that it only identifies the load vakeemtich

would not have a lighting load is available. It also does not consider the fact that there may be
other differences between the loads for winter and summer, such as more general behavioural
differencesFor instance the increased likelihood ofikeholds using a tumble dryer in winter,

due to the difference in weather conditions.

4.2.6.Edge effects

A number of the stages in the algorithm work based on calculating running averages. Since the
running averages are calculated based on empty cells at ih@aibggand end of the dataset

for each day, a number of O6edge effectsd ar

disaggregated loads.

The first of the edge effects is observed in the heating elements profile. At the beginning of the
day it was neessary to only allow each iteration of the heating element algorithm to work once
there were sufficient populated cells prior to the interval of interest, as the algorithm looks at

cells on both sides of the cell under investigation. Hence an effectesveld whereby there
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is a gradual rise in power associated with heating elements from zero to the correct value around

12 minutes in, as shown Figure21 below.

100
80

Power (W)
) N D O
(@) o o o (@)

= 4 O T T T T T T T T T T T
\) o} Q S Q “ Q o) Q “ Q 5
SO SINOSINOCO S, S SR RN SR I S
AT IFT TN ITS

—\ean Mean plus one standard deviatier=Mean minus one standard deviati

Figure21. Graph showing the heating element profile and associated standard deviation margins
between 00:00 and 00:59 demonstratinige effects observed in the heating element profile

The secod appliance type profile whichwa af f ect ed by O6edge effec
design of the algorithrwas the cold appliance profile which encoustéedge effects at both
the beginning and end of the day.

There is one step in cold appliance profiling algorithm which reduiaga fron the previous
interval to be considered. Since this cannot be achieved in the first cell, it was necessary to
force the first cell to adopt a null value for the first minute interval at the beginning of the day,

as demonstrated Wyigure22.
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Figure 22. Graph showing theold applianceprofile and associated standard deviation margins
between 00:00 and 00:59 demonstrating eeffectsobserved in theold applianceprofile

After this point in the algorithm, expected valwesre observed throughout the day up until

the end of the @y where the final edge effect svabseved. The effect observed heresaa
consistent increase in the calgcling profile at constant gradient from around 23:30 up until

the end of the dagFigure23). This effectwas caused due to the running averages which are
necessarto decide whether the cold cycle should be ON. Since the typical cold cycle in this
project is ON for up to around 30 minutes per cycle, then when the algorithm begins to compare
data against data which is beyond the cells in the dataset then thedeldidyappear to the
algorithm as always being ON. As more and more cycles appear to be turned ON, a gradual
rise in the profilevas observed which manifests itself as the edge effect obserizegline23.
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Figure 23. Graph showing theold applianceprofile and associated standard deviation margins
betweer22:00 and23:59 demonstrating edge effects observed irctieé appliancerofile

Whilst these edge effects were not desirable, theg fedrly insignificant in size and fadiway
from the peak times which we of particular interest to this project. Furthermore, sthee
sum of all of the profiles we constrained to be equivalent to the total obsepvefile, each

of these effects we absorbed by the auxiliary profile at the beginning and end of the day.

4.3. Analysis of Appliance Types

4.3.1.Total Profile

The average electricity usage for a property in shisple was found to be 10.8 kwWh per day
which is greater than the typical UK electricity consumption of 9.0 kWh per day (3,300 kWh
per year)(Ofgem, 2011)and below the high consumption value of 14.0 kWh per day (5,100
kWh peryear)(Ofgem, 2011)The hgher than average figure couddrtly be explained by the

time of year that this sample is based on. Higher than average figures would be expected since
winter consumption is being compared to yeanhgrages. However, it also possible that this

higher than average result is due to the sample being unrepresentative of the UK population.

The standard deviation of total daily electricity usage betwdsys wa 0.6 kWh. This

represents 5.5% of the totakam.

The total load profile for a typical dwelling on a weekday in this sample is shaviguire24.
This profile shows that peak occurs at 19:17 on a weekday aredaljg peak times are
between 18:2and 1957.
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Figure 24. Typical total profile for all properties in the sample generated using data from Mohdays
Fridays between®land 28' October 2011. Additionally showing the mean peofilus and minus one
standard deviation

4.3.2.Base Load

I n order to estimate the o6typical é base | oad
used in this project, the base load at each minute interval was averaged across each of the
properties, thisvas repeated for each day in the dataset. With this averaged data, the typical
base load was calculated by averaging across the different days in order to generate a profile
which represents the average of 51 properties across 28 days. The mean hpsedoadage

was found to be 81 W. The standard deviation of the base load was calculated based on the
variation across the different days rather than the variation across the properties, as this
provides more interesting insights since that is the vaniatioich a network operator would

be likely to see (thegnaynot be as interested in the variation across different properties). The
base load standard deviation was found to be 6 W. This small standard deviation of 7.5%
compared to the mean is expectedpaly a small variation would be expected from day to

day. Since the base load is a measure of the underlying electricity consumption across the day,
the profile for the base load is constant throughout the day as shdviguog25.
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Figure 25. Typicalbase loadorofile for all properties in the sample generated using data from
Mondaysi Fridays between 1st and 28th October 2011. Additionally showing the mean profile plus
and minus one standard deviation

The variation in the base load for each day during themmsshown byrigure26 below. This
variation is caused by a number of factors. The first is the natural variation in the base load
from residents adding to or takimgvay from their base load over time. Examples of actions
which may affect the base load include; purchasing new electronics which draw standby power
and taking action to reduce their consumption by switching off a television at the socket when
going on hadday. The other main cause of the variation in the base load over the month is
associated with problems with the algorithm which are reported in the previous section.
Namely that the algorithm struggles to identify the correct base load when there rig) miétsi

for a particular day.
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Figure 26. Average daily base load value for all properties in the sample fronf'thed" October
2011.
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4.3.3.Heating Elements

The electricity usage associated with heating element appliances (excluding electric showers)
was found to make up a substantial portion of the total electricity usage. As can be seen from
the profile inFigure 27, there is very little electricity usage associated with heating elements
overnight, particularly between 01:00 and 06:00. Between 06:00 and 08:00 electricity usage
ramps up significantly to the morning peakaabund 08:00. Usage remains relatively stable
throughout the day, decreasing gradually until 16:00, with a small increase over the lunch
period (11:30 13:00). From 16:00 to 19:00, usage rises steadily until it reaches the daily peak

at around 19:00. Fro 19:00 onwards usage decreases steadily until the end of the day.
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Figure 27. Typicalprofile ofheating elemerdappliancegminus electric shower$r all properties in
the sample generated using data from Mondalysdays between 1st and 28th October 2011.
Additionally showing the mean profile plus and minus one standard deviation

4.3.4.Electric Showers

The sample of properties used in this projectdéalv penetration of electric showers at 14%

(7 out of 51 properties, including 1 property which only recorded 2 events throughout the 28
days). This is lower than the expectednership rat®f electric showers in the UK, which is
believed to be much higdr, with estimates at 35¢%aula Owen Consulting, 2006) 40-50%
(Walker, 2009) Due to the low penetration of electric showers in the sample, the overall impact
that electric showers could havé they were to be targeted with a peak energy reduction
intervention is low and for this study possibly also underestimated. This issue will be addressed
in more detail in further sections but for now the observed electricity consumption of electric

showes is considered.
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Based on the sample used in this project electric showers use 0.1 kWh per day on average,
approximately 1% of the total electricity usage, with the power usage associated with electric

showers reaching a peak at 07:30 in the morning,@srshn Figure28.
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Figure 28. Typical electric shower profile for all properties in the sample generated using data from
Mondaysi Fridays ketween 1st and 28th October 2011. Additionally showing the mean profile plus
and minus one standard deviation

Considering only the properties where electric shower events were observed led to substantially
different observations. This smaller sample ofr@perties had a much higher total daily
electricity usage of 14.7 kWh (compared to 10.8 kWh for the entire sample). Some of this
additional energy was used by electric showers which averaged 0.7 kWh in this subset of the
sample (compared to 0.1 kWh) bringithe percentage of electricity used for electric showers

up to 4.7% of the total. Interestingly, in these properties electricity usage was up across all the
appliance type categories not just in the electric shower category.

4.3.5.Cold Appliances

Cold appliane profiles for each dwelling were determined algorithmically based on 3 input
parameters. The requirggirameters were the duration of the ON and OFF segments of the
cycle and the power usage when the appliance was ON. These were determined manually for
eaxh dwelling by identifying a period of stable electricity consumption at each dwelling,
usually overnight. Lists of the time periods and parameters for each dwelling are provided in

AppendicesC andD.
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Using the parameters observed during these periadssitpossible to calculate a theoretical
continuous power for each dwelling. The average continuous power usage calculated using this
method fo all of the dwellings was 55 W. This is higher than the stated average continuous
power of more modern fridgieeezers which are in the range28 Weontinuousi 45 Weontinuous
(Appendix E)(DSG Retail, 2014e; DSG Retail, 2014f; DSG Retail, 2014g; DSG Retalil,
2014h)

Once the parameters were added to the algoriit was able to generate a profile based on
when the cold cycles were believed to be ON. This method estimated that the average
continuous power usage was 52 W, with a daily electricity usage attributed to cold appliances
of 1.2 kWh. The profile for caol appliances is shown Figure29. As anticipated, it is mostly
stable throughout the day. However, there is a trend throughout the day which resdessles a
pronownced version of the total daily profile. This trend is believed to be related to the
algorithm inadvertently being affected by the total trends through the running avekages.
example of this is observed kigure29, where a slight peak is observed between 07:00 and
09:00, consistent with the morning peak in total demand.
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Figure 29. Typicalcold applianceprofile for all properties in the sample generated using data from
Mondaysi Fridays between 1st and 28th October 2011. Additionally showing the mean profile plus
and minus one standard deviation

For the purposes of peak load analysee(4.5.3 a numbeof options were considered which
would serve to most accurately represent the cold cycle during the peak times. Since the
algorithm is not believed to work particularly effectively during times of unstable electricity

consumptionasurrogate dataset wesnsidered to replace the cold cycle data during this point
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for peak analysis. The data which was considered was data from 03:080sifide this was

likely to be a period of more stable electricity usage which as discussed previously generally
provided more accurate resultslowever, when compared to the theoretical calculation of
mean continuous powdAppendix D), data from the overnight period was believed to
underestimate electricity usage by around 20%, whereas data 23rt@8:957 (peak time)

was found to be 1.9% above the theoretical value and hence ®i&t48957 data was

retained.

4.3.6.Lighting
As discussed previously, this report will only focus on the estimated lighting load in the
evenings between the median sun set times of October JEhdYJune (21:21).

By averaging the power consumption of the lighting profiles for the properties included in the
sample, for each minute and day of the month and then subsequently averaging each of the
days for each minute it was possible to determitypiaal lighting load profile for the sample,

as shown in by the profile iRigure30 below. The standard deviations usedrigure 30 are

the standard deviations for each minute comparing each of the days. The average power
consumption calculated for lighting between 18:15 and 21:21 is 165 W, which corresponds to
516 Wh/day.
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Figure 30. Typical lighting profile for a subset of 10 properties from the sample generated using data
from Monday$ Fridays between 1st and 28th October 2011 and 1st and 28th June 2011.
Additionally showing the mean profile plasd minus one standard deviation
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In order to estimate the potential of lighting to contribute peak load reduction, each property
was modelled assuming that all traditional bulbs were replaced with low energy equivalents.
The current proportion of low energy bulbs found in each propesydetermined from survey
data and is summarisedTiable1 below. The proportion of low energy lighting found in this
sample of properties was 32%.

Tablel. Results of the housing survey which indicate the proportion of low energy lighting found in

the properties used for the lighting analygiSata was not available for this property and the
average of the sample was used

House ID Standard Low-Energy % Low Energy
1 - - 32%*
8 8 21 72%
9 - - 32%*
10 28 9 24%
14 32 8 20%
15 11 9 45%
16 27 3 10%
18 34 16 32%
19 31 3 9%
20 11 9 45%
32%

The lighting profile was then modelled a second time, however in this instance the standard
bulb proportion of each property was assumed to have been replaced with low energy bulbs
whichrequired 80% less energy than the current standard (ktriesgy Saving Trust, 2014b)

This resulted in the profile shown Figure 31. Comparison of the average lighting profile
observed acrodhe 10 properties as they were observed and as modelled under the low energy

lighting intervention
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Figure 31. Comparison of the average lighting profile observed adtusd.0 properties as they were
observed and as modelled under the low energy lighting intervention
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