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Abstract 

In response to a number of pre-existing and impending challenges facing the UK electricity 

grid, notably the reduction in electricity capacity margins and highly variable generation costs, 

there is growing interest in demand response actions which may help to reduce peak electricity 

demand at the local and national levels. This dissertation focuses on the potential of domestic 

interventions to reduce peak demand. Firstly, 1-minute resolution domestic electricity data is 

disaggregated into appliance types according to an algorithm developed for this project. 

Subsequently, three peak reduction interventions are modelled in order to identify the potential 

reductions which these interventions could result in. The three interventions which were 

considered were to supply low-energy lighting, switch off cold appliances and prohibit electric 

shower use during peak times. Upper bounds for each of these interventions were found to be 

15%, 7% and 0.4% of peak electricity consumption for each of the interventions respectively. 

These results are deemed to be significant reductions in peak demand from the perspective of 

a distribution network operator and may serve to avoid or delay investments in network 

reinforcements.  
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1. Introduction 

1.1. Context 

In response to a number of significant challenges facing the electricity industry at present and 

throughout the coming decades, there has been significant interest shown from governments 

and industry players to understand the impact which domestic demand side response and 

associated domestic electricity efficiency measures could play in resolving these issues.  

1.1.1. Variation in the Cost of Generation 

Despite most customers being charged a flat rate for domestic electricity of around 13.5 p/kWh 

(£135/MWh) (Energy Saving Trust, 2014a) there is substantial variation in the cost of 

generating electricity during a typical day. This variation in the cost of generating electricity is 

shown below (Figure 1), for the average of 1st ï 28th October 2011. The general trend observed 

is a trough in generating costs overnight whilst demand is low, followed by a small morning 

peak and a larger evening peak. Over the course of this month peak generation costs were 2.4 

times greater than base generation costs (Elexon, 2014). This variation arises from the 

requirement for different types of power plant to be active in order to meet demand and in 

particular the cost of the fuels which are used by the different plant types. 

 

Figure 1. Average of the cost of generation by settlement period during the 1st ï 28th October 2011, 

Data source: (Elexon, 2014) 

This large variation in generating costs provides the basis of time of use (ToU) electricity tariffs 

which would see customers charged more for using electricity during peak times, encouraging 

a shift in electricity usage to off-peak times and as a result smoothing the peaks and troughs. 
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1.1.2. UK Electricity Capacity Margin 

In recent years the gap between plant capacity and peak demand, known as the electricity 

capacity margin, has been shrinking which could lead to the risk of blackouts in the United 

Kingdom (UK). The major causes of the shrinking electricity capacity margin are the 

decommissioning of ageing power plants, increased dependence on gas imports and tough 

environmental targets (Ofgem, 2013a; Royal Academy of Engineering, 2013). This problem is 

summarised in a recent report by the Office of Gas and Electricity Markets (Ofgem):  

ñWe continue to expect that margins will decrease to potentially historically low 

levels in the middle of the decade and that the risk of electricity customer 

disconnections will appreciably increase, albeit from near-zero levels.ò (Ofgem, 

2013a) 

Analysis into future trends on the electricity capacity margin suggests that the de-rated capacity 

margin1 will continue to decrease for a further 2 years (Figure 2).   

 

Figure 2. Predicted de-rated capacity margins for the Reference Scenario and associated demand 

sensitivities in the UK, image Source: (Ofgem, 2013a) 

The trend is expected to trough in 2015/16 at which point the capacity margin will begin to 

grow again. The growth in capacity margin after 2015/16 is attributed to an anticipated decrease 

in peak demand due in part to energy efficiency measures (National Grid, 2013). 

                                                 
1 The de-rated capacity margin considers the average excess in supply (compared to winter peak demand) rather 

than the absolute plant capacity, an important distinction as the proportion of intermittent generation sources on 

the grid increases. 
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1.2. Related Projects 

1.2.1. Energy and communities project 

The data for this project has kindly been provided by a previously running project titled, ñThe 

role of community-based initiatives in energy savingò. This project was undertaken by 

researchers at the Universities of Southampton, Reading, Exeter and Westminster and funded 

by the Economic and Social Research Council (ESRC) (ESRC, 2014a). 

The energy and communities project provided two groups of properties with loft and cavity 

wall insulation. Additionally, the test group was involved in an ongoing community project to 

increase awareness and educate participants on using less energy. The aim of the project was 

to identify the impact that a community based initiative could have on domestic energy usage 

reductions (ESRC, 2014a). For the purposes of the energy and communities project, power 

readings were recorded at short (1-second) time intervals for a sample of 175 dwellings 

(Bardsley, et al., 2013).  

1.2.2. SAVE project 

The purpose of the current project is to inform the potential peak load reductions which may 

be achieved by the upcoming Solent Achieving Value from Efficiency (SAVE) project, by 

focusing on a real dataset provided by the óEnergy and Communitiesô project. 

The challenge addressed by the SAVE project is to identify the extent to which energy 

efficiency interventions can contribute to peak demand reduction. More specifically, whether 

energy efficiency interventions can delay or mitigate the need for a distribution network 

operator (DNO) to invest in network reinforcements when substations are close to reaching 

peak capacity (Ofgem, 2013b). 

1.3. Aims and Objectives 

This project will attempt to predict the impacts energy efficiency interventions could have on 

domestic electrical demand profiles by characterising the demand profile of a number of 

dwellings from an existing dataset into its component appliance parts and modelling demand 

reductions. 

The project aim will be achieved according to the following objectives: 

1) Formulate an algorithm which is capable of deconstructing measured electricity usage 

profiles of dwellings into their component appliance parts. 
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2) Apply this algorithm to a known dataset which was collected for the ñEnergy and 

Communitiesò project, in order to identify the appliance use profile of these properties. 

3) Calculate the total reduction in peak electrical power that could be achieved for these 

properties under a range of interventions. 

4) Provide an estimate of the demand reduction that could be achieved by a ñSAVEò type 

intervention following energy efficiency approaches. 
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2. Literature Review 

2.1. United Kingdom Smart Meter Roll Out 

2.1.1. Scope of the UK Smart Meter Roll Out 

Smart meters represent a significant opportunity for electricity networks across the world to 

increase awareness of electricity usage among the domestic consumers attached to these 

networks. 

Over the course of the last 4 years the UK government has been involved in a consultation 

process on the potential roll-out of smart meters. The result is a plan to update all 53 million 

gas and electricity meters in the UK with ósmartô versions by visiting 30 million homes and 

small businesses (DECC, 2013a). The responsibility for the roll-out lies with energy suppliers 

who are required, where it is cost-efficient to do so, to complete the installation across the entire 

country by 2020, however the government does acknowledge that this may pose a significant 

challenge and accept a completion rate of 99.25% by 2020 (Energy and Climate Change 

Committee, 2013). In order to conduct the roll out as economically as possible the government 

suggests that energy suppliers should co-operate in order to bring about the greatest possible 

level of efficiency for the project. 

In order for the smart meters to meet the anticipated demands of the future ósmart gridô all 

smart meters which are to be installed need to be capable of meeting the following functional 

requirements. They must be able to record and register voltages which would allow them to 

detect power outages, they must have load control capabilities in order for network operators 

to potentially be able to remotely control domestic loads in the future, they must be suitable for 

implementing ToU tariffs and they must be able to communicate between the data and 

communications company (DCC)2 and the consumers in order for a variety of demand side 

management strategies to be implemented at a later stage (Energy and Climate Change 

Committee, 2013). 

2.1.2. Anticipated Costs and Benefits of the Program 

The government have outlined a range of qualitative benefits for consumers following the roll-

out of smart meters, which include the following: 

                                                 
2 The DCC is a company which will be appointed by the government to handle all the data associated with smart 

meters. It was decided that one company would be responsible for all data, in order to facilitate easy switching 

for consumers between different energy suppliers with the aim of increasing competition in the energy market 

(Energy and Climate Change Committee, 2013). 
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¶ ñSmart meters give you near real time information on energy use ï expressed in pounds 

and penceò 

¶ ñYou will be able to better manage your energy use, save money and reduce emissionsò 

¶ ñSmart meters will bring an end to estimated billing - you will only be billed for the 

energy you actually use, helping you budget betterò 

¶ ñEasier switching - smoother and faster to switch suppliers to get the best dealsò 

These are the benefits listed on the governmentôs website (DECC, 2013b). 

The economic case set out by Ofgem suggests the programme will cost £11.3bn and will 

provide benefits worth £18.6bn. Benefits are presumed to be derived mostly from energy usage 

reductions and savings in industry processes. All costs and benefits will be absorbed into 

consumerôs energy bills (DECC, 2011). A detailed breakdown of the cost-benefit analysis has 

proved difficult to source, a concern echoed by members of the Energy and Climate Change 

Committee (ECC), who have requested that the Department of Energy and Climate Change 

(DECC) publish further information relating to the benefits of a smart grid (Energy and Climate 

Change Committee, 2013). 

Overall, DECC assumes a bill saving of around 2.8%, however it is uncertain how much of this 

comes from domestic energy efficiency interventions, time of use tariffs or reduced 

administration costs for energy suppliers. 

However, the smart meter impact assessment states the following 2 benefit categories. The first 

is improved information to the network which is made up of reductions in electricity losses, 

more information for targeted investment in grid strengthening and more efficient management 

of power outages. These benefits are believed to be around £1bn (presumably per year, 

although this is not explicitly stated anywhere). The other benefit category considered by the 

impact assessment are related to load shifting due to time of use tariffs resulting in reduced 

peak plant operation. These benefits are estimated to be around £900m (again it is not stated 

whether this is total of per year) (Energy and Climate Change Committee, 2013). 

2.1.3. Government Sources of Supporting Evidence 

A number of large scale trials and reviews have been conducted to inform the UK smart-meter 

roll-out. UK trials conducted directly by Ofgem include the óEnergy Demand Research 

Projectô, óLow Carbon Networks Fundô and ósmart metering consumer research reportô. Further 

research from outside the UK which has guided the cost-benefit analysis includes studies from 
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the óEuropean Smart Metering Industry Groupô the Irish óCommission for Energy Regulationô 

and the United States (US) óAdvanced Metering Initiatives and Residential Feedback 

Programsô (DECC, 2013b). A number of these studies will be reviewed in the next section, 

along with other relevant studies from the literature. 

2.2. Smart Metering Case Studies 

2.2.1. Introduction to Smart Metering Case Studies 

In order to gain insights into the potential impacts that smart metering may have, a number of 

case studies, trials and reviews have been analysed to determine the potential scale of energy 

usage reductions resulting from interventions, along with any areas where further research may 

be required and any possible flaws in methodologies. This review will begin by discussing the 

studies which were considered by the UK government during the UK smart meter roll-out 

consultation. Next, a number of additional large scale international trials will also be 

considered, and finally, some more targeted qualitative research will be presented. 

2.2.2. Energy Demand Research Project 

The Energy Demand Research Project (EDRP) was run by DECC and Ofgem as a series of 

trials between 2007 and 2010. The intention of the project was to identify and quantify 

measures which may be effective in reducing overall domestic energy use or peak energy use, 

with the main focus of the measures being on how consumers react to improved feedback 

relating to their energy usage (AECOM, 2011). 

The interventions which were considered included: energy efficiency advice, historic 

consumption information, benchmarking against other households, engagement through target 

setting, smart meters, real time displays, financial incentives, digital media information and in 

one trial a community based financial incentive was also tested. The various trials had a total 

sample of 60,000 households spread across the UK of which 18,000 had smart meters installed 

(AECOM, 2011). 

An important finding from the trial was that for almost all interventions across the various trials 

there was no significant reduction in electricity demand if a smart meter was not installed in 

the household. The only exception were interventions involving clip on real time displays 

which provide users with detailed feedback anyway and benchmarking which found a small 

reduction in the Scottish and Southern Electric (SSE) trial only, albeit the only trial in which 

this intervention was tested (AECOM, 2011). 
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Interventions in households where a smart meter was present were generally more successful, 

the report suggests this could be attributed to receiving the technology itself, options available 

with the smart meters and more frequent and accurate feedback and billing (AECOM, 2011). 

Real time displays (RTDs) provide household with immediate information on their energy 

usage and can alert consumers to current high levels of consumption or high base loads, hence 

they should provide a means for consumers to curb their energy use through improved 

awareness. In the EDRP the combination of RTDs with smart meters yielded energy usage 

reductions of around 3% with reductions persisting to the end of the trials from 2007-2010 

(AECOM, 2011). It is believed that accompanying advice relating to the smart meter and RTD 

is very important for the intervention to yield a demand reduction as consumer engagement is 

key and this can only be achieved through a useable display, a concept which will be discussed 

later. Surveys identified that the most successful displays showed information related to cost 

rather than power or energy and that CO2 emissions were not perceived as particularly useful, 

which seems to follow a pattern of how familiar consumers are with a metric. The literature 

review for this study made the following observations which werenôt quantified. The first was 

that RTDs may be useful for confirming an energy reduction action rather than initiating one 

and the second is that RTDs are used by consumers to check all appliances are off before bed 

and when leaving the house. Audible alarms for high consumption were not received positively 

and provided no electricity savings. However, traffic light systems were received much more 

positively (AECOM, 2011). 

A number of trials were conducted which focused on energy advice and historic feedback. 

These provided mixed results from 0% - 5% reductions with the most successful trial being 

one which provided advice progressively over the course of the trial (monthly instalments) in 

short easy to digest statements. Whereas a less successful trial provided all information in a 

more detailed booklet at the start of the trial (AECOM, 2011). 

ñThe message is that advice should be provided as a fundamental requirement, and 

historic feedback can be useful, but the details of delivery, and combination with other 

interventions are critical.ò (AECOM, 2011) 

A number of other interventions were considered during this project, the results of which are 

summarised here. Interventions based on financial incentives were mostly unsuccessful at 

reducing overall energy consumption and the effects only last as long as the incentive is in 

place. Largely due to the lack of engagement with the websites, web based interventions 

showed no real positive effects. ToU tariffs studied in these trials saw effects of up to 10%, 



9 

notably, larger shifts were observed at weekends and in smaller households. No total demand 

reduction was observed in ToU trials and data related to which appliances were shifted was not 

gathered, this is an important area for further research. Further research should also be 

conducted to identify which demographic groups were more or less likely to reduce their 

consumption (AECOM, 2011). 

ñThe optimum tariff levels and ratios, and the role of advice and technology in 

supporting behaviour change, are as yet poorly understood.ò (AECOM, 2011) 

Whilst initial research has been conducted into the area of ToU tariffs by these trials, there is a 

clear gap in knowledge which could provide an interesting avenue for further research. 

2.2.3. Electricity Smart Metering Customer Behaviour Trials 

Through its Commission for Energy Regulation the government of Ireland has conducted 

extensive research into customer behaviour to produce óone of the most statistically robust 

smart metering behavioural trials conducted internationally to dateô. (Commission for Energy 

Regulation, 2011). 

There were two key stages to the project, a benchmarking stage and a trial stage. Benchmarking 

was used to identify a ótypicalô energy consumption over a 6 month period prior to the start of 

the interventions which was then followed immediately by a trial stage where the interventions 

were tested for a year (Commission for Energy Regulation, 2011). Households were offered to 

take part in the trial via a slip which was torn off (presumably attached to their bill) and overall 

the trial achieved a 30% response rate. 

Surveys were conducted with each of the 5,375 households prior to and after each trial in order 

to identify any changes in attitude and to inform the allocation of households to appropriate 

interventions. Particular attention was paid throughout the recruitment process to ensure that 

the participants were representative of the national profile (Commission for Energy Regulation, 

2011). 

The trials were a combination of different time of use (ToU) tariff levels and a range of demand 

side management (DSM) interventions, including; bi-monthly energy statements, monthly 

energy statements, electricity monitors or a financial incentive for overall load reduction and 

weekend tariffs. They also received fridge magnets with the rates for each ToU band for their 

specific tariff group. 
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For the trial the ToU tariffs were designed so that the average consumer who made no changes 

to their electricity consumption would not be penalised financially. The different rates were 

allocated according to measured system demand peaks in three tiers, 11pm ï 8 am (night rate), 

8am ï 5pm (day rate), 5pm ï 7pm (peak rate) and 7pm ï 11pm (day rate). The range of rates 

for different tariff groups was significant (12-20 úc/kWh for the most stable tariffs, up to 9-38 

úc/kWh for the most variable tariffs). There is still no strong evidence to suggest any of the 

ToU tariffs outperform any of the others, hence there is no evidence for a ótipping pointô at 

which ToU tariffs suddenly become effective (Commission for Energy Regulation, 2011). 

ñDemand for peak usage estimated as being highly inelastic relative to price.ò 

(Commission for Energy Regulation, 2011) 

The overall results observed from these trials are as follows: a 2.5% reduction in overall 

electricity usage and an 8.8% reduction in peak electricity use. The optimum combination for 

reducing electricity usage was bi-monthly billing, energy usage statement and an electricity 

monitor which resulted in a peak shift of 11.3% (Commission for Energy Regulation, 2011). 

A number of other more general observations were made as a result of these trials: 

¶ All but one of the intervention trials provided statistically significant energy usage 

reductions. 

¶ It was observed that households with greater energy consumption tend to provide the 

largest overall energy savings. 

¶ Where peak load shifting has occurred it is usually towards post peak and night usage, 

as opposed to pre-peak. This is logical since consumers canôt use energy before they 

arrive home. 

¶ The fridge magnet and stickers which demonstrated information related to the ToU 

tariff bands were deemed to be successful in relating the information regarding tariff 

bands, with an 80% recall rate. 

¶ The benefits of the trial were believed to be restricted to behavioural change and not 

the investment in more energy efficiency products. 

¶ 82% of participants made some behavioural change with regards to how they use 

electricity in order to gain financial benefit from the ToU tariff. 

The report also comments on a potential barrier to interventions being related to the relatively 

small financial benefits associated with behavioural change to reduce peak load, so focussing 

on savings may not prove to be particularly useful. 
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ñBarriers to peak reduction relate to the difficulty of linking behaviour change to bill 

reduction. These perceptions may have contributed to the current recorded reduction. 

This may be hard to address due to exaggerated expectations of savings and similar 

exaggerated expectations of consequences if reduction is not achieved.ò 

(Commission for Energy Regulation, 2011) 

Additionally, the report comments on the link between energy usage and socio-economic 

factors. They postulate that more affluent households (which are typified by higher social grade 

and educational achievement) are likely to be able to reduce their energy usage more, as they 

have a higher baseline energy usage. However due to their relative affluence the financial 

savings gained from reducing consumption would be lower as a proportion of their earnings. 

ñHouseholds headed by individuals with greater educational achievement or social 

grade achieved higher levels of reduction than those with lower levels. This was in 

part related to the typically higher level of usage associated with these households. 

Therefore, the impact of education or social grade on the ability to gain benefit from 

the tariffs is limitedò (Commission for Energy Regulation, 2011) 

2.2.4. Advanced Metering Initiatives and Residential Feedback Programs 

The óAdvanced Metering Initiatives and Residential Feedback Programsô report is a meta-

review of feedback based energy efficiency studies between 1974 and 2010 in developed 

countries carried out by the American Council for an Energy-Efficient Economy in the US 

(Ehrhardt-Martinez, et al., 2010).  

Average savings from feedback measures are found to be in the range of 4% - 12%, with direct 

feedback, such as real time displays more successful than indirect feedback which occurs post 

consumption. Measures which provide feedback at regular intervals are more successful than 

when feedback is provided over longer timeframes, for instance with energy bills. They also 

observe that direct feedback is more effective if additional information is provided alongside 

total consumption. Enhanced billing achieved 5.5% and real time feedback achieved 7%. 

However, for more recent studies focusing on just the US, energy savings were lower than the 

averages recorded across the entire sample of studies (Ehrhardt-Martinez, et al., 2010). 

They state that the average overall energy savings are lower for programs targeting load 

reduction rather than energy efficiency, as would be anticipated. However, the total reduction 

for load shifting programs was around 3% on average compared to around 10% for 

conservation measures (Ehrhardt-Martinez, et al., 2010). 

They comment that the overall impact of a particular intervention is not solely based on the 

average energy savings associated with that intervention but also on the uptake rate associated 
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with intervention. Intuitively, the intervention which worked on an opt-out basis as opposed to 

an opt-in basis had higher participation rates and hence could achieve higher overall energy 

usage reductions. When participation rates are factored into energy usage reduction statistics 

the enhanced billing intervention reduces to 2% and real time feedback with additional 

information reduces to 6% (Ehrhardt-Martinez, et al., 2010). 

As noted in other studies the largest savings are likely to come from combinations of measures, 

not from feedback devices alone, such as in-home displays (IHDs) plus personalised 

recommendations (Ehrhardt-Martinez, et al., 2010). 

It is believed there are 3 main ways that consumers save energy having taken part in a feedback 

program. The first is to modify their behaviour, the second is low-cost energy stocktaking such 

as replacing energy inefficient bulbs and the third is to invest in more energy efficient 

appliances such as dishwashers. It is suggested that the main energy savings are achieved from 

behavioural change (Ehrhardt-Martinez, et al., 2010). 

Analysis of the time dependence of energy efficiency interventions suggests that long term 

interventions are likely to yield more modest savings than short term studies, 7.7% vs 10.1% 

in the studies considered. However, it is believed that the longer term studies consisted of a 

more representative sample of consumers. Further analysis on studies which considered time 

dependence within the study itself found that as long as feedback was maintained, energy 

savings persisted through time, and the authors of the report postulate that the lower energy 

savings associated with the longer term studies may be the result of seasonal effects. As most 

of the short term studies were carried out in summer months which had higher energy use due 

to air-conditioning systems, potential energy savings were greater (Ehrhardt-Martinez, et al., 

2010). 

The regional and temporal context of the case studies under review is also deemed to be an 

important factor in determining the energy saving potential of an intervention. For example 

they find that studies that were carried out from 1970-1990, during the óenergy crisis eraô were 

likely to have higher energy savings than studies carried out between 1995 and 2010, the 

óclimate change eraô. They also found that studies with European consumers yielded higher 

energy savings compared to those in the US (Ehrhardt-Martinez, et al., 2010). 
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2.2.5. Perth Solar City Trials 

A range of other large scale trials have been conducted across the world which were not 

reviewed by the UK government but which can provide further evidence on the impact of 

domestic energy efficiency measures, some of which are reviewed here. 

Launched in 2009, the Perth Solar City Program tested a range of interventions in a sample of 

16,000 properties in Perth and surrounding suburbs. The measures included automated air-

conditioner demand response for reducing peak load, ToU tariffs, enhanced feedback from in 

home displays, home óeco-consultationsô, behavioural change programs, community based 

social marketing and a number of measures to encourage the uptake of small scale renewables 

(Perth Solar City, 2012). Whilst some of these measures are not relevant in the UK domestic 

context, a large number of them can provide useful insights. 

The most significant intervention for reducing peak electricity demand was the automated 

control of domestic air-conditioning units, this resulted in a peak reduction of 25% (Anda & 

Temmen, 2014). Whilst this intervention may not be directly transferable to the UK (due to the 

low penetration of air-conditioning units), it shows the large potential that automated control 

of energy intensive devices can have, so long as consumers have enough trust in suppliers to 

allow them to switch them off. As the number of heat pumps continues to rise in the UK, it is 

plausible that a similar system could be employed for these. Encouragingly, of the consumers 

who participated in this trial in Perth, 87% said they would be willing to participate in similar 

trials in the future, indicating that their comfort was unlikely to have been significantly 

impacted by the intervention (Perth Solar City, 2012). 

The ToU tariff trials which were conducted involved a three tier rate system to distinguish 

between night time, day time and weekdays between 14:00 and 20:00, where there was a factor 

of 3 difference between the highest and lowest rates (Perth Solar City, 2012). This trial found 

that the average reduction in electricity was 5%, with a 9% reduction during peak periods. 

When coupled with an IHD, this rose to a 6% reduction in overall usage and a 13% reduction 

during peak periods (Anda & Temmen, 2014). Alone IHDs were estimated to reduce overall 

electricity usage by 1.5% and peak demand by 5% (Anda & Temmen, 2014). 

A group of 3,500 participants were provided with a home eco consultations, in which a 

consultant would provide a 90 minute audit and discussion with residents to inform them on 

how to decrease their energy usage. This strategy resulted in a 12% reduction in overall 

electricity usage and an 8% reduction in peak demand (Anda & Temmen, 2014). This 
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intervention was received very positively by residents with 87% of participants rating it 

positively (Perth Solar City, 2012). Whilst these results are very positive, no indication in the 

paper is given the longevity of this effect and hence it is not clear how long energy reductions 

would be expected to last for. 

A similar strategy, of providing advice on energy efficient behaviour was assessed through the 

behaviour change program, in this case participants were given feedback and recommendations 

over the phone on various occasions. This trial saw slightly more modest results than the home 

eco-consultation of 7.5% overall electricity usage reductions and peak demand reductions of 

7%. One group of participants was provided with a combination of the behaviour change 

program, home eco consultation and an IHD. In this trial total energy usage was reduced by 

21% and peak demand reduced 17% which are very promising results and suggest that using 

multiple mediums to promote energy efficiency could be even greater than the sum of their 

parts (Anda & Temmen, 2014). 

The entire Perth Solar City program was supported by an extensive marketing campaign 

including; cinema and print advertising, billboards, and sponsorship of local events. The effects 

of this marketing campaign are believed to have reached beyond just the properties who were 

involved in the individual trials to other households in the area. The óripple effectô of the 

marketing campaign is believed to be around 1.6% reduction in overall energy use (Perth Solar 

City, 2012). 

2.2.6. Italian Smart Meter Roll Out 

With a high penetration of smart meters in Italy there has been scope to conduct large scale 

analysis of domestic energy efficiency interventions. One such trial involves testing the 

efficacy of ToU trials to reduce electricity demand across a sample of 1446 households in 

northern Italy using one yearsô worth of data at 15 min intervals (Torriti, 2012). The tariff 

system segments electricity usage into time segments of peak and off-peak, where peak is 

between 08:00 and 19:00 on weekdays. The difference in rates is low, 9.9 úc/kWh and 7.1 

úc/kWh for peak and off-peak respectively. The authors assume that appliance design and 

controls are constant between the 2 consecutive years. 

In order to remove weather effects on electricity consumption, they remove any data points 

where there is a greater than 4°C difference between the two years for the same time and day 

slot. This exclusionary principle was responsible for removing around 7% of data from the 
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dataset. Data was then aggregated across the dataset in order to be able compare the daily load 

profile under a standard tariff and a ToU tariff (Torriti, 2012). 

Surprisingly they find that when using a ToU tariff consumption actually rises by 13.7%. The 

average household now pays 5.31 Euros per day (under ToU) compared to 5.43 Euros per day 

previously, a slight decrease as users shift their consumption away from peak times (Torriti, 

2012). 

The authors are very positive about the impact that ToU tariffs have had on load shedding 

during the morning peak. The peak which was originally between 8:00 and 8:30 has now been 

shifted to 6:45 to 7:15 and has reduced from around 0.75 kWh per 15 minute period to 0.71 

kWh per 15 minute period. Whilst it is clear that there is a consumer response to the ToU tariff, 

the peak has essentially been moved from one point in time to another, whether this is beneficial 

would depend on whether non-domestic electricity use is also higher during the original peak. 

If not it may be more beneficial to have staggered prices during the shoulder period3 (Torriti, 

2012). 

For the higher evening peak, it is clear that consumers are avoiding using electricity during 

peak times however as people are now waiting until after 19:00 to use electricity there is an 

increase in peak demand just at a later time. Across the 41 substations which were involved in 

this study, 75% actually experienced an aggravation of peak demand problems when moving 

to the ToU tariff (Torriti, 2012).  

2.2.7. Qualitative Studies on Smart Meters 

All of the trials described previously focus on identifying the average effect that an intervention 

has on a sample of households which is very important in determining the scale of the impacts 

each intervention may be able to provide overall. However, blanket roll-out of measures may 

not prove to be the most cost-efficient method of making energy usage savings. An alternative 

which has been considered through the qualitative work of the following authors may be useful 

in helping to identify households where certain measures show more promise than others. 

2.2.8. Analysis of Customer Reviews  

A recent paper by Buchanan et al, 2014, focuses on using product reviews for four electricity 

usage monitors obtained from an internet review site to identify benefits and drawbacks of real 

time displays. The reviews are analysed qualitatively to see how users respond to ósmart 

                                                 
3 The shoulder period is the time directly before or after the peak period 
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metersô. There are three key areas of interest for this study: Why do users want energy 

monitors? How do they interact with them? What is the outcome of the interactions? 

(Buchanan, et al., 2014). 

By identifying patterns and common positive and negatives aspects of the meters Buchanan et 

al (2014) are able to identify some of the key benefits and drawbacks of using electricity 

monitors. According to their analysis consumers predominantly buy energy monitors for 

financial reasons and less so for environmental reasons, which suggests that people are more 

interested in how monitors would benefit them as opposed to how their consumption impacts 

the environment. They identify that when energy monitors are used successfully, the process 

works by enabling consumers to óseeô energy and bring energy usage into their consciousness 

whereas previously it was an abstract concept. Both of these points are consistent with findings 

from the EDRPs surveys that people are more interested in displays which show money, rather 

than energy or CO2 emissionsô, as they can visualise it more easily and this is their primary 

motivation to reduce energy use (Buchanan, et al., 2014). 

The authors claim that energy monitors encourage consumers to adopt the following actions: 

experiment with electricity use, save money, switch off appliances, buy more eco products and 

encourage others to use less energy. 

The main drawbacks of electricity monitors which were identified by this study were technical 

difficulties with the monitors, inaccurate readings and that the monitors have a novelty effect 

which wears off eventually (Buchanan, et al., 2014). This means that it is important to create 

monitors which are easy to use, provide relevant and accurate information and to provide 

monitors in a situation where consumer engagement can be maintained through additional 

information.  

2.2.9. Residential Engagement with Energy Conservation 

Murtagh et al (2014) have recently published a paper which looks at how different households 

regard energy efficiency measures and energy usage in general. The authors believe that 

placing too much emphasis on the average energy usage reduction of a particular intervention 

is obscuring important patterns in the effects of interventions for individual households and 

hence is missing an important opportunity to target interventions more effectively based on 

household characteristics (Murtagh, et al., 2014). They focus on feedback via IHDs and adopt 

a qualitative methodology to arrive at their findings. 
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The sample consisted of 21 properties in different social, economic and geographic contexts 

around the south of the UK in which interviews were conducted with the residents. One of the 

key findings of the study was that the majority of households (17/21) who had an energy 

monitor for over 6 months were not using the IHD (Murtagh, et al., 2014). Despite the majority 

of the sample not using the IHD, they were actively trying to reduce their energy consumption. 

ñThe IHD provided information and enabled behaviour change for some households 

but overall, the participants demonstrated energy saving behaviour before and 

outside of monitor usage, and drew on knowledge on electricity use beyond that 

offered by the monitorò (Murtagh, et al., 2014) 

Analysis of the interviews allowed the authors to categorise the households into 3 types in a 

20:60:20 split as monitor enthusiasts : aspiring energy savers : energy non-active, a 

classification which they developed themselves. The four households which made up the 

monitor enthusiast group were largely motivated by a mixture of financial and environmental 

reasons for their engagement with the monitor saving energy, despite the four households 

coming from a range of income brackets. The aspiring energy savers were again largely 

interested in saving money and considered that even small savings were worth a small amount 

of effort. However, it was noted that there was a large range of engagement across this group. 

The final group showed very little interest in taking action to save energy despite in some cases 

acknowledging the moral requirement to do so (Murtagh, et al., 2014). 

2.2.10. The Importance of Smart Meter Interfaces 

A paper by Kerrigan et al (2011), is predominantly focused on the usability of smart meters 

and how people interact with them. They achieve this by setting users the task of retrieving 

particular information from a commonly used smart meter used across Italy by the energy 

company óEnelô, of which there are currently 32 million installed. 

They find that 69% of the time users were unable to successfully retrieve the desired 

information from the smart meter (Kerrigan, et al., 2011). In general users blame themselves 

for failure to reach the desired information as shown by a survey at the end of the study, 

however a number of strategies are suggested which could improve the usability of this smart 

meter. The first of these strategies is to use symbology and language which is easy for the user 

to understand, in particular to avoid jargon such as ñinstantaneous powerò and codes (Kerrigan, 

et al., 2011). Another useful addition to this meter would be the inclusion of a back button, in 

case users make a mistake whilst navigating the meter. Finally it is suggested that displays 

should be easy to read (perhaps including back lighting) and larger enough that text can spread 
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across as few views as possible (Kerrigan, et al., 2011). These considerations are important as 

the design and usability of smart meters could have a significant impact on how well 

interventions based on smart meters can achieve energy savings through user engagement. 

2.3. Domestic Electrical Load Disaggregation 

2.3.1. Introduction to Load Disaggregation 

In order to shed light on the composition of domestic load profiles, with the aim of identifying 

which appliances consumers are willing to shift away from peak times and consequently which 

appliances to target with intervention, a growing body of work has focused on domestic 

electrical load disaggregation. This involves using the total load profile of a property and 

attempting to separate the profile into component appliance parts. The methods used to achieve 

disaggregated loads vary depending on the resolution of the data (how frequently 

measurements are captured), the variables captured in each time step and external information 

available about the properties, along with the desired level of detail of the output, creating 

highly context specific methodologies. This review will assess a number of the common 

methods which appear in the literature. 

2.3.2. Multivariate high-resolution methods 

When high resolution data (meter readings recorded at 1 second intervals) for a number of 

variables is available it is possible to build highly accurate disaggregated load profiles, by 

searching for appliance ósignaturesô. A number of authors have published papers on this topic. 

The method described in a paper by Chahine et al (2011) considers voltage and current which 

are turned into real and reactive power. Changes in the various features of the total load profile 

are detected and the relevant appliance is deemed to be turned on according to matching 

changes against an appliance signature database. The paper focuses on characterising different 

appliance signatures according to the probability distribution of a number of events (Chahine, 

et al., 2011). 

Similarly a paper by Figueiredo et al (2012) looks at active power, reactive power and power 

factors to determine typical appliance signatures which can then be extracted from the load 

profile according to changes in the total demand profile (Figueiredo, et al., 2012). 

2.3.3. Probabilistic low-resolution methods 

In situations when high volumes of measured data are not able to be captured, for example if 

the sample of properties is very large, or it isnôt cost efficient to capture high resolution data 
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for a large number of variables, then it is necessary to use alternatives means to estimate 

disaggregated load profiles.  

Akbari (1995) suggested an algorithm to disaggregate hourly whole buildings loads by 

considering the temperature dependence of the electrical load at hourly resolution to determine 

the heating/cooling load. End use profiles are determined by firstly generating end use profiles 

from building audit data simulation and then adjusting these according to measured data 

(Akbari, 1995). 

The first part of the algorithm is to separate the load into a temperature dependent part and a 

temperature independent part through regression analysis of outdoor dry bulb temp against 

load. The temperature independent part is then simply allocated to lighting and miscellaneous 

according to the results from the modelling conducted based on the site audit. They also state 

that the sum of disaggregated loads is constrained at hourly intervals to be the same as the 

measured load (Akbari, 1995). 

They find that the algorithm is successful in predicting end use profiles up to around 30% of 

actual measured data when they compare derived against measured profiles. However, they 

also note that there is a substantial difference in the performance of the algorithm for two 

different building types (Akbari, 1995). 

Similarly to Akbari (1995), Birt et al (2012) suggest a methodology which considers the 

temperature dependence of loads. The disaggregated profiles obtained in this paper are 

achieved through a statistical modelling methodology based on external temperatures to give a 

base load and active load estimate for individual properties, along with heating and cooling 

season gradients which could then be applied to external temperature data to estimate the active 

and passive loads of individual properties at the hourly resolution (Birt, et al., 2012). 

A paper by Dominguez-Navarro, et al (2009) looks at load disaggregation as an error 

optimisation problem between pre-determined expected load profiles of different appliances 

and actual recorded data. The shape and size of each appliance profile is capable of changing 

during each movement of the optimisation algorithm, with the aim being to minimise the error 

between the modelled profile and the real data (Dominguez-Navarro, et al., 2009). 

Work carried out by Richardson et al (2009) focuses on generating 1 minute resolution lighting 

data for dwellings, using a probabilistic method. The tool they have built is available as an 

excel example online. The method uses occupancy, irradiance data and sample household 
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lighting characteristics in a Monty-Carlo simulation in order to generate a theoretical lighting 

profile (Richardson, et al., 2009). 

2.3.4. Characterising Appliance Loads 

Gruber et al (2014) propose a probabilistic method for determining the total demand of a 

property based and synthesised appliance type data, i.e. the aggregation of different appliance 

types. An interesting aspect of this research is the classification they have used for the various 

appliances found in dwellings, they focus on the common usage traits of each appliance to 

determine which category the appliance should be part of rather than the end use of the 

appliance, which leads to categories containing fridges and television base loads grouped 

together and television active use falling into another category (Gruber, et al., 2014). 

Identifying a practical grouping of appliances will be essential in this project. 

An article by Kilpatrick et al (2011) describes a methodology for disaggregating domestic load 

profiles into appliance types. This methodology suggests adopting the following stages: 

1) The first is to identify the minimum power usage of the property, it is assumed that this 

is representative of the standby power requirement or base load and can simply be 

subtracted from the profile. 

2) Next the cold cycling component should be identified and removed according to the 

cold parameters (these will be discussed in the methodology section of this report). 

3) Once the base load and cold cycling profiles have been removed large spikes associated 

with heating elements can be identified and removed. These are typified by short 

intense spikes in energy demand, leaving a profile consisting of lighting and residual 

loads. 

This article provides an interesting starting point for the development of an algorithm suitable 

for this project. Particularly interesting are the categories of appliance type which are used 

(Kilpatrick, et al., 2011).  

2.3.5. Delta Form of Load Profiles 

Similarly to methodologies described in the section on multivariate high resolution methods, 

Liang et al (2010), look at a variety of electricity characteristics: Current, voltage and power, 

to create appliance signatures which can then be identified from within the total profile load 

profile. 
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An interesting aspect of this study is the way they consider both a snapshot form of the load, 

which is the total power, current, etc. observed at any one time, but also a delta form, which 

demonstrates the change that has occurred in the profile between one point in the time from the 

previous point. They postulate that as long as the snapshot interval is short enough (~1 s) then 

by considering the changes in load it may be possible to identify appliance signatures (Liang, 

et al., 2010). This could have potentially useful applications for this project as high resolution 

data is available. 

2.3.6. Estimating Demand Responsiveness 

A previous study on the demand responsiveness of different appliance types, uses the standard 

load profile types published by Elexon to estimate the total load profiles in an area of Bath, 

UK. The authorsô then estimate the proportion of each load which could feasibly be impacted 

by a demand response action, in order to predict the demand responsiveness of domestic 

electricity throughout the day (Hamidi, et al., 2009). The findings from this study are presented 

in Figure 1Figure 3. 

 

Figure 3. Total percentage responsiveness which is identified as possible at that time of day (Hamidi, 

et al., 2009) 

The results from this study are interesting, in that they aim to provide an upper limit for what 

could be achieved from a generic set of interventions. One key weakness of the analysis which 

could be addressed by the current study is the use of synthetic data for the generation of 

appliance load profiles. Additionally by focusing on more specific interventions, the findings 

from the current dissertation could add interesting knowledge to the area. 
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A further study presented by Soares et al (2014) uses the number of dwellings in an area and 

the appliance ownership rate in order to simulate appliance load type profiles. These profiles 

are then used to determine the proportion of domestic energy in a particular area which could 

be shifted from peak, according to a set of assumptions (Soares, et al., 2014). 

The assumptions are that loads with a thermostat can have the set points adjusted during peak, 

in order to save 5% of the energy, interruptible loads will have a reduction in electricity of 10% 

during peak, which will need to be repaid at a higher rate (15%) during off-peak periods. And 

that loads which can be shifted will only be used out of peak times (Soares, et al., 2014). 

Interestingly, the authors identify various appliances whose energy consumption can easily be 

shifted away from peak. These appliances are washing machines, tumble dryers and dish 

washers (Soares, et al., 2014). They are particularly suitable for load shifting interventions 

since they generally only need to be used once per day for a short (1 ï 3 hour) cycle and for 

the most part delaying this cycle wold not cause significant inconvenience to the user. Whilst 

these loads provide a significant opportunity for peak load reduction, the unpredictable nature 

of the appliance cycles would make them challenging to extract from a total load profile.   

The authorsô claim that savings of between 0.5% and 5% in peak load can be achieved (Soares, 

et al., 2014). This study is based on data from Portugal, where domestic load profiles are 

substantially different to the UK due to the use of air conditioning units in response to 

differences in climatic conditions. Similarly to the (Hamidi, et al., 2009) paper, the appliance 

load profiles are simulated based on more general data whereas this project aims to make 

predictions based on measured data.  
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3. Methodology 

3.1. Overview 

The main aim of this project was to estimate the maximum impact that a range of interventions 

could have on reducing the peak domestic electrical load, which occurs during the evening on 

weekdays. 

This was achieved by disaggregating the total demand profiles for a number of properties into 

their constituent base load, cold appliance, heating element and lighting profiles and then 

aggregating the various appliance profiles across a sample of properties in order to determine 

the extent that each appliance type contributes to the electrical load peak. Once this has been 

determined, an upper bound for the impacts that a range of interventions could achieve is 

estimated. This then gives an estimate of the maximum impact that interventions could have 

on reducing peak electricity usage, this can inform the upcoming SAVE project. 

The SAVE project aims to determine whether energy efficiency interventions can be used to 

relieve the strain on electricity substations which are close to reaching maximum capacity, as 

opposed to employing more traditional network reinforcement measures. The project aims to 

trial a range of interventions including technology deployment, commercial incentives and 

engaging residents. The technological measure, involves providing residents with low energy 

light bulbs in order to decrease electricity usage associated with lighting. Engagement measures 

are focused around using data to tailor engagement campaigns and commercial incentives 

involve creating a ToU tariff in order to encourage residents to shift their electricity usage away 

from peak times (Ofgem, 2013b). 

3.2. Dataset 

The data used in this project was provided by the energy and communities project which aims 

to identify the impact which community based initiatives can have on reducing energy 

consumption in dwellings (ESRC, 2014a; University of Southampton, 2014a). The project was 

undertaken by academics at the Universities of Southampton, Reading, Exeter and Westminster 

and was funded by the ESRC. 

The dataset consists of high temporal resolution power readings for a sample of 175 properties 

over the course of 3 years from 2011 to 2013 (Bardsley, et al., 2013). Amongst other datasets, 

total electrical power usage for each of the households was collected for each one second 

interval during the trial, along with surveys and interviews conducted with each of the 
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households. The survey data was gathered for the purpose of identifying relevant attributes 

which could be used to characterise households. Data was gathered using a commercial 

monitoring system called óAlertMeô. 

For the purposes of the current project the data has been aggregated into one minute intervals 

in order to reduce the data volume. However, by maintaining relatively high resolution, patterns 

of interest in the data have been preserved. These patterns are used to identify trends in 

electricity usage which can be used to identify different types of electrical load at a particular 

point in time. 

The data aggregation and cleansing processes were carried by researchers working on the 

ñCensus 2022ò project. This project aimed to identify alternative means of generating small 

area socio-economic indicators based on household electricity use to replace the previous time 

consuming and costly practise of ócensus-takingô (ESRC, 2014b; University of Southampton, 

2014b). 

The time period of the data used for this project is the 1st - 28th October 2011 and for the purpose 

of determining the lighting load additional data from 1st - 28th June 2011 has also been used.  

Within the overall dataset there were a large number of properties which had incomplete data 

for the period under investigation. Properties with substantial periods of missing data, i.e. more 

than a day or multiple gaps of more than an hour were rejected from the sample for this project. 

Fortunately it was still possible to select a sample of 51 properties which had sufficient data to 

proceed with the project. 

3.3. Algorithm 

3.3.1. Background 

In order to disaggregate total load profiles into individual appliance type profiles for each 

property it was necessary to create an algorithm which could identify which types of appliance 

were likely to be active at any particular time interval. 

With the 1 minute resolution data which was available for this project the decision was made 

to focus mostly on relational properties between the power usage at one time interval compared 

to the power usage at times prior to and following the interval of interest (the term óinterval of 

interestô will be used to describe a unique one minute interval which the algorithm is working 

on directly), as opposed to probabilistic methods based on time of day (more relevant with 
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lower resolution datasets) which were only used to help determine the lighting load for each 

property at later stages in the analysis. 

Due to the large volume of data involved in this project, the algorithm was designed to work 

as autonomously as possible, in order to minimise manual data analysis. With this in mind a 

tool was created in Microsoft Excel which was able to generate base load, heating element, 

electric shower, and cold appliance profiles from raw data with just a small number of 

parameters related to the cold cycling requiring updating. 

3.3.2. Data Preparation 

The algorithm which deconstructs the total load profile began by generating a matrix of power 

usage readings based on date and time, from the raw data which exists as a long list of meter 

readings for each minute interval across the month, as shown by Figure 4. In order to achieve 

this in Excel it is necessary to create separate values for the date and time from the combined 

date time stamp which was provided. The functions required for this are: 

ñ=INT(CELL)ò 

which provides an integer value for the date and discounts the time element and: 

ñ=MOD(CELL,1)ò 

which returns the decimal remainder once the integer has been subtracted and hence results in 

the time element from the date-time stamp. 

Once the separate date and time values are available the data is pivoted around these two criteria 

to form a matrix of the power readings (Figure 4). For this project it was decided to perform 

this step at the beginning of the process in order to have all of the subsequent profiles created 

in this format, whereas if this step is performed at a later stage it would need to be performed 

multiple times to translate the data from the various profiles into this matrix format. 
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Figure 4. Screenshots to show the initial data manipulation processes occurring during the algorithm. 

In particular showing the transformation of the dataset to a matrix format 

3.3.3. Base Load 

Once the power readings have been transformed into an appropriate format the disaggregation 

process can begin. Research into the field of load disaggregation suggested that a suitable 

starting point for many algorithms is to identify the base load, as this can be identified as the 

minimum power usage of a property and hence is straightforward to calculate, this is then 

assumed to be a constant throughout the day (Kilpatrick, et al., 2011). 

There are two important points worth mentioning relating to the base load calculation in this 

project. The first is that the base load has been calculated separately for each day in the sample, 

since it was deemed possible that residentôs behaviour may result in a fluctuating base load. 

For example if the users were to go on holiday for a week they may make a conscious decision 

to turn off appliances at the plug rather than leave them on standby, or perhaps during the trial 

they may purchase a new appliance which contributes to the base load, which would not have 

been present at the start of the trial period, hence the decision to calculate a variable base load. 
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The second consideration is related to problems with incomplete data. Although steps were 

taken to avoid using properties which had large sections of incomplete data, for some of the 

properties included in the sample there are still short periods where the data is incomplete, due 

to the malfunctions with the monitoring equipment. As a result, the decision was made to 

calculate the base load as the lowest non-zero power reading for each particular day. The main 

problem which manifests itself when calculating the base load in this project is when there is 

an interval prior to or directly after a period with no data, as these sometimes have a small 

number of the 1 second power readings contributing towards the average for that minute, hence 

making the average for that minute much lower than the true value. The base load algorithm 

may then pick this up as the base load as it could be the lowest non-zero but it may actually be 

lower than the real base load, so the base load profile is believed to be a slight underestimation 

of the actual base load. 

In Excel a formula to calculate the lowest non-zero value in an array is: 

ñ=SMALL(ARRAY,COUNTIF(ARRAY,0)+1)ò 

Throughout the algorithm there are additional stages to ensure that the sum of the disaggregated 

profiles which are created by the algorithm remain constrained at each 1 minute interval by the 

observed total value at that time interval, this is a property which has been built into the 

algorithm which was suggested in the literature (Akbari, 1995). For the base load profile, this 

is achieved by checking whether the suggested base load calculated by the lowest non-zero 

formula (above) is less than the observed value at that time interval and in any case where it is 

not, (i.e. when there is missing data) a zero is returned instead of the base load value. Once the 

base load profile has been created it is subtracted from the total demand profile to return an 

intermediate profile which in this project is called total2. 

3.3.4. Heating Element Spikes 

The next stage of the algorithm was to remove short duration high intensity spikes in electricity 

demand which are typically associated with heating elements such as kettles, toasters, hobs and 

electric showers (Kilpatrick, et al., 2011). According to sources in the literature, the next stage 

would normally have been to remove the cold cycle profile (Kilpatrick, et al., 2011) and this 

strategy was tested. However, due to the mechanism which was used to extract the cold profile 

in this project, improved cold cycling results were observed by first removing the heating 

element spikes and then removing the cold cycle in the following step. This is due to the 

significant impact that intense spikes in demand have on the running averages which are used 
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to predict the cold cycle profile and hence removing the spikes first allows the cold cycle 

running averages to be calculated from a more stable baseline. 

There were two methods which were tested for the removal of the heating element spikes. The 

first was to consider each time interval and compare the value observed from the total2 profile 

at that time to the mean of the 10 cells before and 10 cells after the interval of interest, then if 

the difference is larger than a threshold value, usually 500 W, then the value is assumed to be 

part of a spike and is included in the heating element profile as the difference between the 

interval of interest and the average of the surrounding cells. This comparison is then applied to 

each interval in the trial period in order to build up a heating element profile. Whilst this method 

works well for short duration spikes, for example a kettle running for 1 or 2 minutes, it becomes 

gradually less effective as the duration of the spike increases, for example when an electric 

shower is in operation for more than 11 minutes consecutively. This is due to the fact that 

during an extended spike, the intervals which are used for the comparative average are also 

elevated values which makes it difficult for the algorithm to identify whether the threshold has 

been met. Also, it is possible that the amplitude of the central values of the spikes are 

underestimated as they are compared to averages which contain more spike elevated values. 

In order to avoid this issue, the solution used in this project was to create a range of filters for 

various different spike durations. In each filter the 1 minute interval of interest is compared to 

the two unique intervals on either side of the interval of interest which become progressively 

far from the interval of interest. For example the first filter which tests for a 1 minute spike 

compares the value of the interval of interest to the average of the two values of the cells which 

are directly adjacent to the interval of interest. The 3 minute filter then checks the interval of 

interest to the average of the two values of the cells which are two cells away from the interval 

of interest. This process is then repeated up to intervals of 23 minutes. Examples of the first 3 

filters are shown below, these represent the formulas to calculate the 1, 3 and 5 minute spike 

profiles: 

ñ=IF(CELL-(( CELL-1 +  CELL+1)/2)>THRESHOLD VALUE, CELL-(( CELL-1 +  

CELL+1)/2),0)ò 

ñ=IF(CELL-(( CELL-2 +  CELL+2)/2)>THRESHOLD VALUE, CELL-(( CELL-2 +  

CELL+2)/2),0)ò 

ñ=IF(CELL-(( CELL-3 +  CELL+3)/2)>THRESHOLD VALUE, CELL-(( CELL-3 +  

CELL+3)/2),0)ò 
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The value for the amplitude of a spike at any given interval is then chosen as the maximum of 

the various different spike filters for that interval. The benefit of this method is that it ensures 

that even for wider spikes the entire spike amplitude is being included in the heating element 

profile. 

The decision to include spikes of up to 23 minute was to ensure that even in periods with highly 

volatile electricity usage, the maximum possible number of spikes were being included in the 

heating element profile. It was also considered that possible problems associated with including 

too many features as heating element spikes could be avoided by setting an appropriately high 

threshold value. 

In most instances the threshold value which was used to determine whether or not to include 

an interval as a spike was 500 W. This value was selected as it ensured that on either side of an 

event involving a heating element the majority of the spike duration was included in the heating 

element profile. Take the example of a kettle which is switched on for 1 minute with a 

continuous power usage of 2 kW. If the 1 minute duration occurs so that the first 15 seconds 

of usage are in one aggregated one minute interval and the remaining 45 seconds are in the 

following one minute interval then the 2 kW spike would actually appear as a 2 minute spike 

of 500 W for 1 minute followed by 1,500 W for 1 minute (Figure 5). Hence the decision was 

made to allow spikes as low as 500 W to be included in the heating element profile. 

 

Figure 5. Hypothetical example of heating element spike using artificial data. In this example three 

identical spikes in terms of intensity (2 kW) and duration (60 seconds) are shown as they would 

appear in the aggregated data if a) all 60 seconds of activity fell within the same 1-minute interval, b) 

the first 15 seconds of activity appeared in one interval and the remaining 45 appeared in the 

consecutive interval and c) the 60 seconds of activity bridged the two aggregated intervals evenly. 

In a small number of properties it was necessary to make an exception and increase the 

threshold value. This happened in instances where the cold cycling magnitude was particularly 
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high (greater than 500 W) and the duration of the ON cycle was shorter than 20 minutes, which 

meant that cold cycling features were being picked up as heating element spikes. 

Once the heating element profile was created it was subtracted from total2 to create a new 

intermediate profile called total3. Again measures were included to ensure that the resultant 

sum of disaggregated profiles would be constrained by the observed total profile. 

3.3.5. Electric Showers 

Heating element spikes associated with electric showers were of particular interest to this 

project due to their large power usage and relatively long duration, making them good 

candidates for peak demand reduction interventions. With this in mind an additional filter was 

applied to the heating element profile. Since electric showers are unique in that they have a 

power requirement of over 7 kW (Walker, 2009), it was assumed that any spikes over 6 kW 

were associated with electric showers (in order to account for the peak reduction effects 

associated with aggregation described previously in Figure 5). So two new profiles were 

created which separated all heating element spikes over 6 kW from those below 6 kW and 

created an electric shower profile and a separate residual heating element profile. 

3.3.6. Cold Appliances 

The next stage in the algorithm is to create and subtract the cold appliance profile. The most 

suitable method for generating a cold appliance profile was based on comparing running 

averages. This stage in the process is the most manual of the different components of the 

algorithm since it requires the input of three factors which need to be manually determined 

from the data set, these three factors can be determined by observing a period of stable 

electricity usage, for example over night when appliances are not being switched on and off. 

Figure 6 below, which consists of manufactured data, shows the three parameters which need 

to be determined in order to express the cold cycle of an appliance. These are the length of time 

an appliance is on, the length of time an appliance is off and the power usage of the appliance 

when it is on. 
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Figure 6. Representative example of a cold appliance cycle using artificial data. In order to show the 

important parameters used to characterise a cold cycle 

A number of methods were considered when determining which moving average to use for the 

cold cycle element of the algorithm. The first was to estimate the total length of a cycle (i.e. 

from ON and back to ON again) and then divide the time into two even segments and the other 

two methods were to make the lengths of the period an average was calculated over correspond 

to the length of the on or off cycle. Both variations, i.e. on first and off first were tested. For an 

example cycle where the appliance is on for 20 minutes and off for 40 minutes the following 

average comparisons were tested, to identify an optimal match. 

 

Figure 7. Graph to show the various running averages which were considered for the cold cycling 

stage of the algorithm 

Based on the observations from this analysis it was decided that the best comparison of 

averages to use to determine whether a cold cycle was on or off was based on the comparison 

of an average of the number of cells that would make up a typical ON period minus the average 
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of the consecutive number of cells which would characterise an OFF period, as this provided 

the most obvious gradient difference when the cycle is ON compared to when it is OFF. The 

next stage of the cold cycling algorithm is to determine whether the gradient of the trend is 

negative. This is simply done by subtracting the value of the moving average for the following 

cell from the current cell. If the value is below a specified negative threshold then the cycle is 

deemed to be ON and is given the value of the power usage for that appliance in the cold cycle 

profile. 

Similarly to the other stages in the algorithm measures were taken to ensure that the value 

obtained for the cold cycle profile could not exceed the remaining total3 value for that specific 

time interval in order to ensure that the sum of the disaggregated profiles is constrained by the 

total electrical demand reading at all times. 

In some properties there are multiple cold cycles present. In this instance the same process is 

repeated twice with different parameters corresponding to each of the observed cold appliances. 

The first profile to be removed is the profile with the shortest overall cycle length. Once this 

has been removed the same process is repeated for an intermediate total profile using the 

parameters for the longer cycle. This creates a total cold cycle profile which represents the 

overall cold cycling picture. The resultant profile is the uncharacterised portion of the profile. 

3.3.7. Lighting 

In order to demonstrate proof of concept, a lighting algorithm was developed which was 

capable to a certain extent of determining the proportion of the total load profile which is 

attributable to domestic lighting. The strategy used for this stage of the analysis varies 

significantly from the initial stages of the algorithm which are described above, in that it 

requires a secondary dataset and that it is based on differences in the load profile between 

summer and winter, rather than short term patterns in the data. The additional dataset which is 

used for this stage is another 28 day period of 1-minute power readings for the same properties 

for the period from 1st June to the 28th June 2011 (the dataset discussed previously runs from 

the 1st October to the 28th October 2011). Due to time constraints and the large amounts of 

manual processing required, it was only possible to run this stage of the analysis on a subset of 

the properties. The properties included in the lighting analysis are shown in Appendix A. 

The basic premise of this analysis is to compare the uncharacterised profile of each property in 

June against October, between the median sunset times of the 2 months, i.e. 18:15 for October 

and 21:21 in June (United Kingdom Hydrographic Office, 2014). Since it is assumed that a 
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significant proportion of the difference in the uncharacterised loads for these 2 months would 

be associated with lighting. However the author does also acknowledge that other appliances, 

particularly tumble dryers, may be used more during this time in the winter period which would 

overestimate the lighting profile identified by this analysis.  

The first step in this analysis is to run the previously described algorithms for each of the 

months, in order to generate profiles which have had heating elements, base loads, cold 

appliances and electric showers removed. The next step is to subtract the June uncharacterised 

profile from the October uncharacterised profile between the median sunset times. 

The profile generated by this method only considers the period from 18:15 to 21:21 and hence 

it is not sufficient to identify the total electricity usage reduction which could be achieved by 

interventions affecting lighting. However it does cover peak times and hence the method is 

deemed sufficient for the purposes of this project. 

Survey data which is available for most of the properties in the sample, was then used to 

identify the proportion of fittings in each dwelling which use low energy bulbs. This data was 

then used to model the potential reduction in energy used for lighting that could be achieved in 

each property if all bulbs were to be replaced with low energy bulbs.   

3.3.8. Uncharacterised 

Following the extraction of profiles for all the appliance types described above, the remaining 

electricity usage is grouped into a final uncharacterised profile. This profile makes up the 

difference between the sum of the appliance type profiles and the total observed profile. This 

profile is expected to include a range of appliances such as televisions, personal electronics, 

computing and wet appliances such as washing machines and dishwashers. 

3.4. Analysis 

3.4.1. Appliance Load Profiles 

Once the individual appliance type profiles had been disaggregated at the individual household 

level a variety of analyses were conducted. 

Firstly, ótypicalô profiles for each of the load types for a particular property were generated by 

averaging the power usage at each time interval during a day across all of the days in the trial 

period. For each load type standard deviations for different time intervals have also been 

calculated in order to identify the variation that are observed for that load at a particular time 

from day to day. 
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Further analysis involved aggregating each of the load types across a range of different 

properties in the sample and a range of different days in order to identify more generally the 

typical load profile for that particular appliance, along with the standard deviations which 

provide an idea of how that load varies from day to day. Each of the appliance load profiles is 

generated based on data from 51 properties each with 28 days of data available, hence providing 

a total sample of 1,428 individual days ensuring statistical significance of the appliance profiles 

which have been generated. 

By combining those loads it was possible to identify how significant a role each load plays in 

the overall load profile for the total of all the properties in the sample 

3.4.2. Peak Load Reductions 

Once the total load profile was successfully disaggregated into component parts, various 

elements of the profile were modelled assuming they had undergone a particular intervention. 

The first of these interventions was to assume that all standard bulbs in each property were 

replaced with low energy equivalents. Survey data gathered by the energy and communities 

project provided information on the proportion of standard light bulbs in each of the properties. 

The observed profile was then scaled for each property to reduce the power usage of the 

standard bulb proportion by 80%, in order to simulate replacing these bulbs with low energy 

bulbs which use 80% less energy (Energy Saving Trust, 2014b). 

The next analysis aimed to simulate the impact of an intervention to switch off cold appliances 

during the peak time. This was achieved by setting the power usage of cold appliances to zero 

during the peak period. Since there was uncertainty as to the extent of a power surge which 

may be experienced once the appliances were allowed to be turned back on, modelling was 

also performed which reallocated the saved energy from peak to the period following peak. 

The final intervention which was considered was focused on electric showers. The modelling 

involved shifting all shower events which were observed during the peak period into the period 

following peak, in order to simulate the impact of prohibiting residents from using electric 

showers during peak. 
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4. Results 

4.1. Introduction to Results 

The results chapter of this report is split into two main sections in order to address the two key 

challenges of this project individually. The first section focuses on a qualitative assessment of 

how successfully the algorithm was able to disaggregate domestic load profiles into individual 

appliance type profiles. The chapter then moves on to the results of this project in terms of the 

identified ótypicalô appliance load profiles and the possible reductions to the total load profile 

which may be achieved by interventions targeting these appliances. 

4.2. Appraisal of the Algorithm 

4.2.1. Base Load 

As described in the methodology section of this report, base load profiles were calculated by 

taking the minimum non-zero value of the power readings for each property for each day and 

subtracting that value as a constant throughout the respective day. 

This method has proved to be successful for days where the dataset is complete, however the 

method is less successful on days which have missing data as shown by the example below in 

Figure 8 and Figure 9. Figure 8 shows that there were 2 days in October 2011 where house 001 

had incomplete data, these were the 8th and 26th. Days of incomplete data are characterised as 

days where the total load profile drops to zero. Since this would imply absolutely no appliances 

were switched on, a much more likely cause for null values is a malfunction with the 

monitoring equipment. 
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Figure 8. Recorded power consumption of house 001 from 1st - 28th October 2011 at 1 minute 

intervals. Axis maximum of 1000 W has been chosen to highlight base load data which has led to 

peaks being truncated 

Figure 9 shows the base load value that the algorithm has allocated to house 001 for each day 

in the month. It is clear that for days which have missing data, the algorithm will sometimes 

provide an erroneous base load value which is below the real base load value for that day, as 

shown by the base load results for the 26th. However, when the dataset is complete for an entire 

day then the algorithm does a good job up picking up the actual base load, as demonstrated 

throughout the rest of the month. 

 

Figure 9. Base load power consumption identified by the algorithm for daily intervals from 1st - 28th 

October 2011 
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For the 8th October 2011 which also has incomplete data, closer observation of the load profile 

around the periods of missing data explains why the algorithm still successfully identified the 

base load. As shown by Figure 10, the surrounding values to instances of missing data were 

already elevated substantially above the expected base load (typically above 200 W for this 

period whereas the base load for this house is expected to be around 80 W). Hence even if some 

null values were included in the average for an adjacent time interval (which would lower the 

average) in this instance it has not resulted in a smaller value than the actual base load. 

 

Figure 10. Power consumption for house 001 on the 8th Oct 2011 between 06:00 and 08:30 

In summary, the algorithm for identifying the base load works well and the process is relatively 

straight forward, as shown by the successful results throughout most of the example above. 

The main problem which can occur is that the base load can occasionally underestimate the 

magnitude of the base load, if the data set is incomplete for a particular day. 

4.2.2. Heating Elements 

The algorithm used to remove the spikes associated with heating elements works well when 

peaks appear during a period of stable electricity usage, as shown by the peaks at 08:38 and 

18:03 in Figure 11 below. In these instances the algorithm is able to almost perfectly identify 

the entire duration and magnitude of the peak and return a smoothed profile for the remaining 

electricity usage. 
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Figure 11. Power consumption data from house 022 for the 21st October 2011. Where total minus 

base load represents the total profile with the base load for that day subtracted and total minus 

heating elements represents the total profile minus the base load and minus the heating element 

profile. 

It continues to work relatively successfully even when there are large numbers of peaks 

adjacent to one another, for example during the period between 14:28 and 15:34 (Figure 11) 

and between 16:45 and 18:40 (Figure 12). 

 

Figure 12. Power consumption data from house 008 for the 8th October 2011. Where total minus 

base load represents the total profile with the base load for that day subtracted and total minus 

heating elements represents the total profile minus the base load and minus the heating element 

profile. 

There are however a number of issues with the output of the algorithm. The first occurs when 
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peak. These are caused due to the aggregation and averaging of the load profile to 1 minute 

intervals. An example of this feature is observed at 08:09 in Figure 11 and can be seen as a 

short spike in the profile even once the data has had peaks removed. 

The second which can be seen to occur in the above load profile (Figure 11) between 21:53 

and 22:08 is the result of the selection of the widths of the peaks of interest. Since the algorithm 

looks at a maximum width of 23 cells, whenever a peak lasts for longer than 11 minutes then 

the peaks on the end will only ever be recorded as half the magnitude, since the algorithm is 

working on the average of a non-peak against a peak value. However 11 minutes is still longer 

than peaks which have typically been extracted in the literature (Kilpatrick, et al., 2011). 

4.2.3. Electric Showers 

The electric shower profile generated by the algorithm is created based on the modelled heating 

element profile. Since the heating element algorithm has already been identified as working 

relatively successfully, this provides a strong foundation for the electric shower profile. 

In order to validate the results of the electric shower algorithm, one dwelling which presents 

the characteristics of an electric shower was analysed. This was done by characterising each of 

the modelled electric shower events identified by the algorithm and creating a frequency 

distribution of the duration of the events and magnitude of the events (in terms of power usage). 

The chosen property for this analysis was house 108, for which 45 electric shower events were 

identified during the period of the 1st to the 28th October 2011. 

The first of the characteristics to check was the magnitude of the spikes which had been 

identified by the algorithm. Encouragingly, this analysis found that 29 of the 45 events had a 

magnitude between 7700 and 8100 W (mean of 7880 W and standard deviation 439 W), all 45 

events were within a range of 2500 W (6400 W ï 8900 W) and the events were relatively 

normally distributed, as shown by Figure 13 below. This suggests that the algorithm is 

accurately picking out appropriately sized peaks. 
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Figure 13. Distribution of the power consumption of electric shower events observed by the algorithm 

for 1st - 28th October 2011 in house 108 

The next characteristic of the electric shower peaks which was analysed was the duration of 

the events. Similarly to the magnitude of the events, this analysis found the duration of the 

events to be approximately normally distributed with a mean event duration of 5.4 minutes and 

standard deviation of 2.4 minutes. The frequency distribution of event durations is shown 

below in Figure 14. The results of the event duration analysis suggest the events identified by 

the algorithm are likely to be representative of the actual showers taken by the residents of 

house 108. 

 

Figure 14. Distribution of the duration of electric shower events observed by the algorithm for 1st - 

28th October 2011 in house 108 

The combination of the analysis of event duration and event magnitude suggest that the electric 

shower profile created by the algorithm is realistic and serves to validate the algorithm. 

Whilst it is believed that the algorithm generally works well, there are occasionally slightly 

higher shower peaks than the expected shower peak for that dwelling. It is believed this could 

occur when the shower peak overlaps with another short duration appliances which gets 
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included in the peak profile. In further versions of the algorithm this could be avoided by adding 

a narrow minimum and maximum value for the shower peaks. 

With respect to event duration, events are never found to be unreasonably longer than the mean 

duration, however the two particularly short events of just one minute are acknowledged as 

being suspicious and it is postulated that these could be the result of a number of high power 

consuming appliances running simultaneously. For example tumble dryers which typically 

have power consumptions in the range of 2 ï 4 kW and cycle lengths of 1 ï 2 hours alongside 

cooking appliances (Appendix B) (DSG Retail, 2014a; DSG Retail, 2014b; DSG Retail, 2014c; 

DSG Retail, 2014d). 

4.2.4. Cold Appliances 

Of the various appliance type profiles which needed to be extracted from the overall load 

profile, cold appliances proved the most challenging to successfully extract. This was due to 

inconsistencies in cold cycle parameters throughout the dataset. 

The method which was selected to perform the task of extracting the cold appliance profiles 

works well when identifying cold appliances during periods of stable overall electricity usage, 

such as overnight or during weekday afternoons when residents are not present. This can be 

observed in the load profile shown below in Figure 15. Once the cold appliance profile which 

has been determined by the algorithm has been subtracted from the overall profile, the result is 

a smoothed load profile with most cold features successfully removed. The first 4 ON cycles 

are reasonably successfully removed and result in a relatively stable auxiliary appliance profile 

as shown in black, with only slight spikes observed at the beginning of some of the ON periods. 

A number of issues arise when the cold cycle algorithm runs in times of inconsistent electricity 

usage. The first which is also observed in Figure 15, is that the algorithm tends to elongate the 

ON period of the cycle in  the lead up to a general rise in electricity usage for example during 

the last cycle before residents wake up or return from work. This is observed between 04:46 

and 05:58 during the cycle below (Figure 15), where the algorithm is allocating non-cold 

appliance electricity consumption to the cold profile. In this profile there is also a period 

between 07:11 and 07:33 for which the algorithm has incorrectly assumed the cold cycle should 

be ON. 
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Figure 15. Power consumption data from house 026 for the 8th October 2011 between 00:00 and 

08:00. Where total minus heating elements represents the total profile minus the base load and minus 

the heating element profile and total minus cold cycle represents the total profile minus the base load, 

heating element and cold cycling profiles. 

For certain dwellings in the sample multiple cold cycles were observed. In these instances a 

two stage cold appliance algorithm was applied to the data. As the complexity of the cycling 

increased, it became more difficult for the algorithm to accurately identify the two cold cycles 

(Figure 16). Whilst the algorithm can still work effectively in identifying the location of the 

cold appliances being active, it leaves more noise than when an individual algorithm runs. 
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Figure 16. Power consumption data from house 001 for the 21st October 2011 between 00:00 and 

08:00. Where total minus heating elements represents the total profile minus the base load and minus 

the heating element profile and total minus cold cycle represents the total profile minus the base load, 

heating element and the two component cold cycling profiles. 

There are two main circumstances which cause the algorithm to work less successfully. The 

first is when the total profile is more unstable such as when residents are home and awake, 

particularly during weekday evenings. Figure 17 shows the electricity usage from house 119 

on the 16th from 1600 to 2400 and demonstrates how an unstable electricity usage has a 

significant impact on the accuracy of the cold cycle algorithm. Due to the large variation in 

electricity usage, the subsequent cold appliance profile which was generated shows much more 

rapid changes in cold cycling than would be anticipated. 
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Figure 17. Power consumption data from house 119 for the 16th October 2011 between 16:00 and 

23:59. Where total minus heating elements represents the total profile minus the base load and minus 

the heating element profile and total minus cold cycle represents the total profile minus the base load, 

heating element and cold cycling profiles. 

The second major challenge for the algorithm is when the compressor of the fridge or freezer 

is required to run for longer during an individual cycle (for example when ambient temperature 

goods are placed into the freezer) or the compressor does not use a constant power. The cold 

cycling profile for house 029 on the 10th between 0000-1000 shown in Figure 18, demonstrates 

the difficulties faced by this algorithm when the length of the ON cycle varies from one cycle 

to the next. Figure 18 shows that the duration of the modelled ON period of the cold cycle 

remains relatively constant, despite the length of the observed ON period varying slightly. The 

modelled ON period tends to be present from the end of the observed ON cycle and it is the 

beginning which is occasionally missed out from the modelled profile. 
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Figure 18. Power consumption data from house 029 for the 10th October 2011 between 00:00 and 

10:00. Where total minus heating elements represents the total profile minus the base load and minus 

the heating element profile and total minus cold cycle represents the total profile minus the base load, 

heating element and cold cycling profiles. 

4.2.5. Lighting 

The lighting analysis conducted in this report was implemented according to the details given 

in the methodology section. This involved comparing the winter (October) uncharacterised 

load profile against a summer (June) uncharacterised load profile. For the purposes of this 

project the difference was only considered between the median sunset time in October (18:15) 

and the median sunset time in June (21:21), however there are interesting characteristics which 

occur out of this time frame which are also discussed in this section. 

Due to time constraints it was not possible to perform this analysis on each of the 51 properties 

in the overall sample, so in order to prove the potential of the method, a subset of 10 properties 

from the sample were selected, these are listed in Appendix A. Due to the smaller sample size, 

all findings relating to lighting should be considered carefully and are given subject to greater 

levels of uncertainty than other appliance type profiles discussed in this report. Despite the 

small sample size, the initial results gathered from this analysis are promising and serve to 

demonstrate that this avenue could be explored further.  

The profiles shown in Figure 19 below represent the October mean profile, June mean profile 

and the difference between the two, for house 015 between 17:00 and 23:59. The two vertical 

dashed lines represent the median October sun set time and median June sun set time, on the 
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left and right hand sides respectively. This profile shows that the mean uncharacterised profiles 

of both time frames are similar up until around 18:00, at which point they begin to diverge until 

around 22:00 where the converge again. The times where these two profiles diverge 

corresponds directly with the time of day when it would be dark in October but still light in 

June. In part this is believed to be the result of lighting which is in use during the October 

period and hence the difference can be an indicator of the domestic lighting load of a property 

in October between these times. 

 

Figure 19. Average power consumption profiles of uncharacterised appliances for house 015 from the 

1st ï 28th October 2011 and 1st ï 28th June 2011 between 17:00 and 23:59. Here the Difference plot 

represents the assumed lighting load profile for this property in October. From left to right the 

vertical dashed lines represent median sunset in October and median sunset in June 

Whilst peak demand falls within the times discussed in the previous example, the morning peak 

is another period of the day for which this analysis may also provide useful results, as shown 

by Figure 20 below. From left to right, the vertical dashed lines in Figure 20 represent median 

sunrise in June, median sun rise in October, median sun set in October and median sun set in 

June. Again from this graph the efficacy of the analysis during the evening can be observed. It 

is also possible to estimate how much of the morning peak (06:00 ï 09:00) is due to lighting, 

since it is anticipated that there would be no lighting load during that time in June as the sun 

has already risen, whereas this period begins in the darkness for October and hence the 

difference could represent the lighting load. 
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Figure 20. Average power consumption profiles of uncharacterised appliances for house 014 from the 

1st ï 28th October 2011 and 1st ï 28th June 2011. Here the Difference plot represents the assumed 

lighting load profile for this property. From left to right the vertical dashed lines represent median 

sunset in October and median sunset in June 

Based on qualitative observation of the profiles shown in Figure 19 and Figure 20, the lighting 

analysis seems to provide intuitively reasonable results given the relative simplicity of the 

method. The main drawback of this method is that it only identifies the load when data which 

would not have a lighting load is available. It also does not consider the fact that there may be 

other differences between the loads for winter and summer, such as more general behavioural 

differences. For instance the increased likelihood of households using a tumble dryer in winter, 

due to the difference in weather conditions. 

4.2.6. Edge effects 

A number of the stages in the algorithm work based on calculating running averages. Since the 

running averages are calculated based on empty cells at the beginning and end of the dataset 

for each day, a number of óedge effectsô are observed in the resultant load profiles for the 

disaggregated loads. 

The first of the edge effects is observed in the heating elements profile. At the beginning of the 

day it was necessary to only allow each iteration of the heating element algorithm to work once 

there were sufficient populated cells prior to the interval of interest, as the algorithm looks at 

cells on both sides of the cell under investigation. Hence an effect is observed whereby there 

-100

-50

0

50

100

150

200

250

300

350

0
0

:0
0

0
1

:0
0

0
2

:0
0

0
3

:0
0

0
4

:0
0

0
5

:0
0

0
6

:0
0

0
7

:0
0

0
8

:0
0

0
9

:0
0

1
0

:0
0

1
1

:0
0

1
2

:0
0

1
3

:0
0

1
4

:0
0

1
5

:0
0

1
6

:0
0

1
7

:0
0

1
8

:0
0

1
9

:0
0

2
0

:0
0

2
1

:0
0

2
2

:0
0

2
3

:0
0

P
o

w
e
r 

(W
)

Summer mean Winter mean Difference



48 

is a gradual rise in power associated with heating elements from zero to the correct value around 

12 minutes in, as shown in Figure 21 below. 

 

Figure 21. Graph showing the heating element profile and associated standard deviation margins 

between 00:00 and 00:59 demonstrating edge effects observed in the heating element profile 

The second appliance type profile which was affected by óedge effectsô associated with the 

design of the algorithm was the cold appliance profile which encountered edge effects at both 

the beginning and end of the day. 

There is one step in cold appliance profiling algorithm which required data from the previous 

interval to be considered. Since this cannot be achieved in the first cell, it was necessary to 

force the first cell to adopt a null value for the first minute interval at the beginning of the day, 

as demonstrated by Figure 22. 
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Figure 22. Graph showing the cold appliance profile and associated standard deviation margins 

between 00:00 and 00:59 demonstrating edge effects observed in the cold appliance profile 

After this point in the algorithm, expected values were observed throughout the day up until 

the end of the day where the final edge effect was observed. The effect observed here was a 

consistent increase in the cold cycling profile at constant gradient from around 23:30 up until 

the end of the day (Figure 23). This effect was caused due to the running averages which are 

necessary to decide whether the cold cycle should be ON. Since the typical cold cycle in this 

project is ON for up to around 30 minutes per cycle, then when the algorithm begins to compare 

data against data which is beyond the cells in the dataset then the cold cycle will appear to the 

algorithm as always being ON. As more and more cycles appear to be turned ON, a gradual 

rise in the profile was observed which manifests itself as the edge effect observed in Figure 23. 
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Figure 23. Graph showing the cold appliance profile and associated standard deviation margins 

between 22:00 and 23:59 demonstrating edge effects observed in the cold appliance profile 

Whilst these edge effects were not desirable, they were fairly insignificant in size and fall away 

from the peak times which were of particular interest to this project. Furthermore, since the 

sum of all of the profiles were constrained to be equivalent to the total observed profile, each 

of these effects were absorbed by the auxiliary profile at the beginning and end of the day. 

4.3. Analysis of Appliance Types 

4.3.1. Total Profile 

The average electricity usage for a property in this sample was found to be 10.8 kWh per day 

which is greater than the typical UK electricity consumption of 9.0 kWh per day (3,300 kWh 

per year) (Ofgem, 2011) and below the high consumption value of 14.0 kWh per day (5,100 

kWh per year) (Ofgem, 2011). The higher than average figure could partly be explained by the 

time of year that this sample is based on. Higher than average figures would be expected since 

winter consumption is being compared to yearly averages. However, it also possible that this 

higher than average result is due to the sample being unrepresentative of the UK population. 

The standard deviation of total daily electricity usage between days was 0.6 kWh. This 

represents 5.5% of the total mean. 

The total load profile for a typical dwelling on a weekday in this sample is shown in Figure 24. 

This profile shows that peak occurs at 19:17 on a weekday and generally peak times are 

between 18:27 and 19:57. 
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Figure 24. Typical total profile for all properties in the sample generated using data from Mondays ï 

Fridays between 1st and 28th October 2011. Additionally showing the mean profile plus and minus one 

standard deviation 

4.3.2. Base Load 

In order to estimate the ótypicalô base load of a property in the sample of properties which were 

used in this project, the base load at each minute interval was averaged across each of the 

properties, this was repeated for each day in the dataset. With this averaged data, the typical 

base load was calculated by averaging across the different days in order to generate a profile 

which represents the average of 51 properties across 28 days. The mean base load power usage 

was found to be 81 W. The standard deviation of the base load was calculated based on the 

variation across the different days rather than the variation across the properties, as this 

provides more interesting insights since that is the variation which a network operator would 

be likely to see (they may not be as interested in the variation across different properties). The 

base load standard deviation was found to be 6 W. This small standard deviation of 7.5% 

compared to the mean is expected, as only a small variation would be expected from day to 

day. Since the base load is a measure of the underlying electricity consumption across the day, 

the profile for the base load is constant throughout the day as shown by Figure 25. 
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Figure 25. Typical base load profile for all properties in the sample generated using data from 

Mondays ï Fridays between 1st and 28th October 2011. Additionally showing the mean profile plus 

and minus one standard deviation 

The variation in the base load for each day during the month is shown by Figure 26 below. This 

variation is caused by a number of factors. The first is the natural variation in the base load 

from residents adding to or taking away from their base load over time. Examples of actions 

which may affect the base load include; purchasing new electronics which draw standby power 

and taking action to reduce their consumption by switching off a television at the socket when 

going on holiday. The other main cause of the variation in the base load over the month is 

associated with problems with the algorithm which are reported in the previous section. 

Namely that the algorithm struggles to identify the correct base load when there is missing data 

for a particular day. 

 

Figure 26. Average daily base load value for all properties in the sample from the 1st ï 28th October 

2011. 
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4.3.3. Heating Elements 

The electricity usage associated with heating element appliances (excluding electric showers) 

was found to make up a substantial portion of the total electricity usage. As can be seen from 

the profile in Figure 27, there is very little electricity usage associated with heating elements 

overnight, particularly between 01:00 and 06:00. Between 06:00 and 08:00 electricity usage 

ramps up significantly to the morning peak at around 08:00. Usage remains relatively stable 

throughout the day, decreasing gradually until 16:00, with a small increase over the lunch 

period (11:30 ï 13:00). From 16:00 to 19:00, usage rises steadily until it reaches the daily peak 

at around 19:00. From 19:00 onwards usage decreases steadily until the end of the day. 

 

Figure 27. Typical profile of heating element appliances (minus electric showers) for all properties in 

the sample generated using data from Mondays ï Fridays between 1st and 28th October 2011. 

Additionally showing the mean profile plus and minus one standard deviation 

4.3.4. Electric Showers 

The sample of properties used in this project had a low penetration of electric showers at 14% 

(7 out of 51 properties, including 1 property which only recorded 2 events throughout the 28 

days). This is lower than the expected ownership rate of electric showers in the UK, which is 

believed to be much higher, with estimates at 35% (Paula Owen Consulting, 2006) or 40-50% 

(Walker, 2009). Due to the low penetration of electric showers in the sample, the overall impact 

that electric showers could have, if they were to be targeted with a peak energy reduction 

intervention is low and for this study possibly also underestimated. This issue will be addressed 

in more detail in further sections but for now the observed electricity consumption of electric 

showers is considered. 
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Based on the sample used in this project electric showers use 0.1 kWh per day on average, 

approximately 1% of the total electricity usage, with the power usage associated with electric 

showers reaching a peak at 07:30 in the morning, as shown in Figure 28. 

 

Figure 28. Typical electric shower profile for all properties in the sample generated using data from 

Mondays ï Fridays between 1st and 28th October 2011. Additionally showing the mean profile plus 

and minus one standard deviation 

Considering only the properties where electric shower events were observed led to substantially 

different observations. This smaller sample of 7 properties had a much higher total daily 

electricity usage of 14.7 kWh (compared to 10.8 kWh for the entire sample). Some of this 

additional energy was used by electric showers which averaged 0.7 kWh in this subset of the 

sample (compared to 0.1 kWh) bringing the percentage of electricity used for electric showers 

up to 4.7% of the total. Interestingly, in these properties electricity usage was up across all the 

appliance type categories not just in the electric shower category. 

4.3.5. Cold Appliances 

Cold appliance profiles for each dwelling were determined algorithmically based on 3 input 

parameters. The required parameters were the duration of the ON and OFF segments of the 

cycle and the power usage when the appliance was ON. These were determined manually for 

each dwelling by identifying a period of stable electricity consumption at each dwelling, 

usually overnight. Lists of the time periods and parameters for each dwelling are provided in 

Appendices C and D. 
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Using the parameters observed during these periods it was possible to calculate a theoretical 

continuous power for each dwelling. The average continuous power usage calculated using this 

method for all of the dwellings was 55 W. This is higher than the stated average continuous 

power of more modern fridge-freezers which are in the range of 25 Wcontinuous ï 45 Wcontinuous 

(Appendix E) (DSG Retail, 2014e; DSG Retail, 2014f; DSG Retail, 2014g; DSG Retail, 

2014h). 

Once the parameters were added to the algorithm, it was able to generate a profile based on 

when the cold cycles were believed to be ON. This method estimated that the average 

continuous power usage was 52 W, with a daily electricity usage attributed to cold appliances 

of 1.2 kWh. The profile for cold appliances is shown in Figure 29. As anticipated, it is mostly 

stable throughout the day. However, there is a trend throughout the day which resembles a less 

pronounced version of the total daily profile. This trend is believed to be related to the 

algorithm inadvertently being affected by the total trends through the running averages. An 

example of this is observed in Figure 29, where a slight peak is observed between 07:00 and 

09:00, consistent with the morning peak in total demand. 

 

Figure 29. Typical cold appliance profile for all properties in the sample generated using data from 

Mondays ï Fridays between 1st and 28th October 2011. Additionally showing the mean profile plus 

and minus one standard deviation 

For the purposes of peak load analysis (see 4.5.3), a number of options were considered which 

would serve to most accurately represent the cold cycle during the peak times. Since the 

algorithm is not believed to work particularly effectively during times of unstable electricity 

consumption, a surrogate dataset was considered to replace the cold cycle data during this point 
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for peak analysis. The data which was considered was data from 03:00 to 04:30 since this was 

likely to be a period of more stable electricity usage which as discussed previously generally 

provided more accurate results. However, when compared to the theoretical calculation of 

mean continuous power (Appendix D), data from the overnight period was believed to 

underestimate electricity usage by around 20%, whereas data for 18:27 to 19:57 (peak time) 

was found to be 1.9% above the theoretical value and hence the 18:27 to 19:57 data was 

retained. 

4.3.6. Lighting 

As discussed previously, this report will only focus on the estimated lighting load in the 

evenings between the median sun set times of October (18:15) and June (21:21). 

By averaging the power consumption of the lighting profiles for the properties included in the 

sample, for each minute and day of the month and then subsequently averaging each of the 

days for each minute it was possible to determine a typical lighting load profile for the sample, 

as shown in by the profile in Figure 30 below. The standard deviations used in Figure 30 are 

the standard deviations for each minute comparing each of the days. The average power 

consumption calculated for lighting between 18:15 and 21:21 is 165 W, which corresponds to 

516 Wh/day. 

 

Figure 30. Typical lighting profile for a subset of 10 properties from the sample generated using data 

from Mondays ï Fridays between 1st and 28th October 2011 and 1st and 28th June 2011. 

Additionally showing the mean profile plus and minus one standard deviation 
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In order to estimate the potential of lighting to contribute peak load reduction, each property 

was modelled assuming that all traditional bulbs were replaced with low energy equivalents. 

The current proportion of low energy bulbs found in each property was determined from survey 

data and is summarised in Table 1 below. The proportion of low energy lighting found in this 

sample of properties was 32%. 

Table 1. Results of the housing survey which indicate the proportion of low energy lighting found in 

the properties used for the lighting analysis. *Data was not available for this property and the 

average of the sample was used 

House ID Standard Low-Energy  % Low Energy 

1 - -  32%* 

8 8 21  72% 

9 - -  32%* 

10 28 9  24% 

14 32 8  20% 

15 11 9  45% 

16 27 3  10% 

18 34 16  32% 

19 31 3  9% 

20 11 9  45% 

    32% 

 

The lighting profile was then modelled a second time, however in this instance the standard 

bulb proportion of each property was assumed to have been replaced with low energy bulbs 

which required 80% less energy than the current standard bulbs (Energy Saving Trust, 2014b). 

This resulted in the profile shown in Figure 31. Comparison of the average lighting profile 

observed across the 10 properties as they were observed and as modelled under the low energy 

lighting intervention. 

 

Figure 31. Comparison of the average lighting profile observed across the 10 properties as they were 

observed and as modelled under the low energy lighting intervention 
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